» Articles » PMID: 31428793

Reconstructing Complex Lineage Trees from ScRNA-seq Data Using MERLoT

Overview
Specialty Biochemistry
Date 2019 Aug 21
PMID 31428793
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Advances in single-cell transcriptomics techniques are revolutionizing studies of cellular differentiation and heterogeneity. It has become possible to track the trajectory of thousands of genes across the cellular lineage trees that represent the temporal emergence of cell types during dynamic processes. However, reconstruction of cellular lineage trees with more than a few cell fates has proved challenging. We present MERLoT (https://github.com/soedinglab/merlot), a flexible and user-friendly tool to reconstruct complex lineage trees from single-cell transcriptomics data. It can impute temporal gene expression profiles along the reconstructed tree. We show MERLoT's capabilities on various real cases and hundreds of simulated datasets.

Citing Articles

Identifying Key Regulatory Genes in Drug Resistance Acquisition: Modeling Pseudotime Trajectories of Breast Cancer Single-Cell Transcriptome.

Iida K, Okada M Cancers (Basel). 2024; 16(10).

PMID: 38791962 PMC: 11119661. DOI: 10.3390/cancers16101884.


Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells.

Cannoodt R, Saelens W, Deconinck L, Saeys Y Nat Commun. 2021; 12(1):3942.

PMID: 34168133 PMC: 8225657. DOI: 10.1038/s41467-021-24152-2.


Minimum Spanning vs. Principal Trees for Structured Approximations of Multi-Dimensional Datasets.

Chervov A, Bac J, Zinovyev A Entropy (Basel). 2020; 22(11).

PMID: 33287042 PMC: 7711596. DOI: 10.3390/e22111274.


Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph.

Albergante L, Mirkes E, Bac J, Chen H, Martin A, Faure L Entropy (Basel). 2020; 22(3).

PMID: 33286070 PMC: 7516753. DOI: 10.3390/e22030296.


Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to myocardial infarction and diabetes data.

Golovenkin S, Bac J, Chervov A, Mirkes E, Orlova Y, Barillot E Gigascience. 2020; 9(11).

PMID: 33241287 PMC: 7688475. DOI: 10.1093/gigascience/giaa128.


References
1.
Regev A, Teichmann S, Lander E, Amit I, Benoist C, Birney E . The Human Cell Atlas. Elife. 2017; 6. PMC: 5762154. DOI: 10.7554/eLife.27041. View

2.
Zappia L, Phipson B, Oshlack A . Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017; 18(1):174. PMC: 5596896. DOI: 10.1186/s13059-017-1305-0. View

3.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M . Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214. PMC: 4481139. DOI: 10.1016/j.cell.2015.05.002. View

4.
Chen H, Albergante L, Hsu J, Lareau C, Lo Bosco G, Guan J . Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. Nat Commun. 2019; 10(1):1903. PMC: 6478907. DOI: 10.1038/s41467-019-09670-4. View

5.
Welch J, Hartemink A, Prins J . SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol. 2016; 17(1):106. PMC: 4877799. DOI: 10.1186/s13059-016-0975-3. View