» Articles » PMID: 31407214

Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes

Overview
Journal Ophthalmol Ther
Specialty Ophthalmology
Date 2019 Aug 14
PMID 31407214
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: The use of optical coherence tomography (OCT) images is increasing in the medical treatment of age-related macular degeneration (AMD), and thus, the amount of data requiring analysis is increasing. Advances in machine-learning techniques may facilitate processing of large amounts of medical image data. Among deep-learning methods, convolution neural networks (CNNs) show superior image recognition ability. This study aimed to build deep-learning models that could distinguish AMD from healthy OCT scans and to distinguish AMD with and without exudative changes without using a segmentation algorithm.

Methods: This was a cross-sectional observational clinical study. A total of 1621 spectral domain (SD)-OCT images of patients with AMD and a healthy control group were studied. The first CNN model was trained and validated using 1382 AMD images and 239 normal images. The second transfer-learning model was trained and validated with 721 AMD images with exudative changes and 661 AMD images without any exudate. The attention area of the CNN was described as a heat map by class activation mapping (CAM). In the second model, which classified images into AMD with or without exudative changes, we compared the learning stabilization of models using or not using transfer learning.

Results: Using the first CNN model, we could classify AMD and normal OCT images with 100% sensitivity, 91.8% specificity, and 99.0% accuracy. In the second, transfer-learning model, we could classify AMD as having or not having exudative changes, with 98.4% sensitivity, 88.3% specificity, and 93.9% accuracy. CAM successfully described the heat-map area on the OCT images. Including the transfer-learning model in the second model resulted in faster stabilization than when the transfer-learning model was not included.

Conclusion: Two computational deep-learning models were developed and evaluated here; both models showed good performance. Automation of the interpretation process by using deep-learning models can save time and improve efficiency.

Trial Registration: No15073.

Citing Articles

A Deep Learning Network for Accurate Retinal Multidisease Diagnosis Using Multiview Fusion of En Face and B-Scan Images: A Multicenter Study.

Ou C, Wei X, An L, Qin J, Zhu M, Jin M Transl Vis Sci Technol. 2024; 13(12):31.

PMID: 39693092 PMC: 11668356. DOI: 10.1167/tvst.13.12.31.


Recent advances in the application of artificial intelligence in age-related macular degeneration.

Gao Y, Xiong F, Xiong J, Chen Z, Lin Y, Xia X BMJ Open Ophthalmol. 2024; 9(1).

PMID: 39537399 PMC: 11580293. DOI: 10.1136/bmjophth-2024-001903.


Dry age-related macular degeneration classification from optical coherence tomography images based on ensemble deep learning architecture.

Yang J, Wu B, Wang J, Lu Y, Zhao Z, Ding Y Front Med (Lausanne). 2024; 11:1438768.

PMID: 39444813 PMC: 11496120. DOI: 10.3389/fmed.2024.1438768.


Artificial intelligence for diagnosing exudative age-related macular degeneration.

Kang C, Lo J, Zhang H, Ng S, Lin J, Scott I Cochrane Database Syst Rev. 2024; 10:CD015522.

PMID: 39417312 PMC: 11483348. DOI: 10.1002/14651858.CD015522.pub2.


AMD-SD: An Optical Coherence Tomography Image Dataset for wet AMD Lesions Segmentation.

Hu Y, Gao Y, Gao W, Luo W, Yang Z, Xiong F Sci Data. 2024; 11(1):1014.

PMID: 39294152 PMC: 11410981. DOI: 10.1038/s41597-024-03844-6.


References
1.
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S . Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2018; 2(4):230-243. PMC: 5829945. DOI: 10.1136/svn-2017-000101. View

2.
Freund K, Korobelnik J, Devenyi R, Framme C, Galic J, Herbert E . TREAT-AND-EXTEND REGIMENS WITH ANTI-VEGF AGENTS IN RETINAL DISEASES: A Literature Review and Consensus Recommendations. Retina. 2015; 35(8):1489-506. DOI: 10.1097/IAE.0000000000000627. View

3.
Lim L, Mitchell P, Seddon J, Holz F, Wong T . Age-related macular degeneration. Lancet. 2012; 379(9827):1728-38. DOI: 10.1016/S0140-6736(12)60282-7. View

4.
Heier J, Brown D, Chong V, Korobelnik J, Kaiser P, Nguyen Q . Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012; 119(12):2537-48. DOI: 10.1016/j.ophtha.2012.09.006. View

5.
Rofagha S, Bhisitkul R, Boyer D, Sadda S, Zhang K . Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013; 120(11):2292-9. DOI: 10.1016/j.ophtha.2013.03.046. View