» Articles » PMID: 31396073

Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity

Overview
Date 2019 Aug 10
PMID 31396073
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

The numbers and strengths of synapses in the brain change throughout development, and even into adulthood, as synaptic inputs are added, eliminated, and refined in response to ongoing neural activity. A number of experimental techniques can assess these changes, including single-cell electrophysiological recording which offers measurements of synaptic inputs with high temporal resolution. Coupled with electrical stimulation, photoactivatable opsins, and caged compounds, to facilitate fine spatiotemporal control over release of neurotransmitters, electrophysiological recordings allow for precise dissection of presynaptic and postsynaptic mechanisms of action. Here, we discuss the strengths and pitfalls of various techniques commonly used to analyze synapses, including miniature excitatory/inhibitory (E/I) postsynaptic currents, evoked release, and optogenetic stimulation. Together, these techniques can provide multiple lines of convergent evidence to generate meaningful insight into the emergence of circuit connectivity and maturation. A full understanding of potential caveats and alternative explanations for findings is essential to avoid data misinterpretation.

Citing Articles

Dissecting the functional heterogeneity of glutamatergic synapses with high-throughput optical physiology.

Barlow S, Levy A, Contreras M, Anderson M, Blanpied T bioRxiv. 2025; .

PMID: 39763981 PMC: 11703220. DOI: 10.1101/2024.12.23.629904.


Synaptic neoteny of human cortical neurons requires species-specific balancing of SRGAP2-SYNGAP1 cross-inhibition.

Libe-Philippot B, Iwata R, Recupero A, Wierda K, Bernal Garcia S, Hammond L Neuron. 2024; 112(21):3602-3617.e9.

PMID: 39406239 PMC: 11546603. DOI: 10.1016/j.neuron.2024.08.021.


Reproducible supervised learning-assisted classification of spontaneous synaptic waveforms with Eventer.

Winchester G, Steele O, Liu S, Maia Chagas A, Aziz W, Penn A Front Neuroinform. 2024; 18:1427642.

PMID: 39345285 PMC: 11427245. DOI: 10.3389/fninf.2024.1427642.


Astrocytic LRRK2 Controls Synaptic Connectivity via Regulation of ERM Phosphorylation.

Wang S, Baumert R, Sejourne G, Bindu D, Dimond K, Sakers K bioRxiv. 2024; .

PMID: 39253496 PMC: 11383028. DOI: 10.1101/2023.04.09.536178.


H-Ras induces exuberant dendritic protrusion growth in mature neurons regardless of cell type.

Krussel S, Deb I, Son S, Ewall G, Chang M, Lee H iScience. 2024; 27(8):110535.

PMID: 39220408 PMC: 11365382. DOI: 10.1016/j.isci.2024.110535.


References
1.
Lu W, Man H, Ju W, Trimble W, MacDonald J, Wang Y . Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001; 29(1):243-54. DOI: 10.1016/s0896-6273(01)00194-5. View

2.
Kerchner G, Nicoll R . Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci. 2008; 9(11):813-25. PMC: 2819160. DOI: 10.1038/nrn2501. View

3.
Schneggenburger R, Rosenmund C . Molecular mechanisms governing Ca(2+) regulation of evoked and spontaneous release. Nat Neurosci. 2015; 18(7):935-41. DOI: 10.1038/nn.4044. View

4.
Mallart A, Martin A . An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J Physiol. 1967; 193(3):679-94. PMC: 1365523. DOI: 10.1113/jphysiol.1967.sp008388. View

5.
Lester R, Jahr C . NMDA channel behavior depends on agonist affinity. J Neurosci. 1992; 12(2):635-43. PMC: 6575615. View