» Articles » PMID: 31363053

Structural Basis for GPCR-independent Activation of Heterotrimeric Gi Proteins

Overview
Specialty Science
Date 2019 Aug 1
PMID 31363053
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Heterotrimeric G proteins are key molecular switches that control cell behavior. The canonical activation of G proteins by agonist-occupied G protein-coupled receptors (GPCRs) has recently been elucidated from the structural perspective. In contrast, the structural basis for GPCR-independent G protein activation by a novel family of guanine-nucleotide exchange modulators (GEMs) remains unknown. Here, we present a 2.0-Å crystal structure of Gαi in complex with the GEM motif of GIV/Girdin. Nucleotide exchange assays, molecular dynamics simulations, and hydrogen-deuterium exchange experiments demonstrate that GEM binding to the conformational switch II causes structural changes that allosterically propagate to the hydrophobic core of the Gαi GTPase domain. Rearrangement of the hydrophobic core appears to be a common mechanism by which GPCRs and GEMs activate G proteins, although with different efficiency. Atomic-level insights presented here will aid structure-based efforts to selectively target the noncanonical G protein activation.

Citing Articles

Receptor-independent regulation of Gα13 by alpha-1-antitrypsin C-terminal peptides.

Park Y, Matsumoto S, Ogata K, Ma B, Kanada R, Isaka Y J Biol Chem. 2024; 301(2):108136.

PMID: 39730062 PMC: 11815680. DOI: 10.1016/j.jbc.2024.108136.


Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G in Human Cancer.

Dwyer M, Aumiller J, Wedegaertner P Mol Pharmacol. 2024; 106(5):198-215.

PMID: 39187387 PMC: 11493338. DOI: 10.1124/molpharm.124.000743.


Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif.

Garcia-Marcos M J Biol Chem. 2024; 300(3):105756.

PMID: 38364891 PMC: 10943482. DOI: 10.1016/j.jbc.2024.105756.


Design, synthesis, and analysis of macrobicyclic peptides for targeting the Gαi protein.

Pepanian A, Binbay F, Pei D, Imhof D J Pept Sci. 2024; 30(6):e3565.

PMID: 38232955 PMC: 11065574. DOI: 10.1002/psc.3565.


Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators.

Pepanian A, Binbay F, Roy S, Nubbemeyer B, Koley A, Rhodes C J Med Chem. 2023; 66(17):12396-12406.

PMID: 37587416 PMC: 11000586. DOI: 10.1021/acs.jmedchem.3c00873.


References
1.
Morris A, Malbon C . Physiological regulation of G protein-linked signaling. Physiol Rev. 1999; 79(4):1373-430. DOI: 10.1152/physrev.1999.79.4.1373. View

2.
Kimple R, Kimple M, Betts L, Sondek J, Siderovski D . Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature. 2002; 416(6883):878-81. DOI: 10.1038/416878a. View

3.
Anand G, Hughes C, Jones J, Taylor S, Komives E . Amide H/2H exchange reveals communication between the cAMP and catalytic subunit-binding sites in the R(I)alpha subunit of protein kinase A. J Mol Biol. 2002; 323(2):377-86. DOI: 10.1016/s0022-2836(02)00919-1. View

4.
de Alba E, Tjandra N . Structural studies on the Ca2+-binding domain of human nucleobindin (calnuc). Biochemistry. 2004; 43(31):10039-49. DOI: 10.1021/bi049310a. View

5.
Siderovski D, Willard F . The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci. 2005; 1(2):51-66. PMC: 1142213. DOI: 10.7150/ijbs.1.51. View