Yan L, Zhang J, Chen L, Zhu Z, Sheng X, Zheng G
Clin Cardiol. 2024; 48(1):e70071.
PMID: 39723651
PMC: 11670054.
DOI: 10.1002/clc.70071.
Lang F, Lee B, Lotan D, Sabuncu M, Topkara V
Methodist Debakey Cardiovasc J. 2024; 20(4):76-87.
PMID: 39184156
PMC: 11342843.
DOI: 10.14797/mdcvj.1392.
Georges G, Fudim M, Burkhoff D, Leon M, Genereux P
J Soc Cardiovasc Angiogr Interv. 2024; 2(6Part B):101060.
PMID: 39131061
PMC: 11307876.
DOI: 10.1016/j.jscai.2023.101060.
Hu J, Yang H, Yu M, Yu C, Qiu J, Xie G
Front Endocrinol (Lausanne). 2024; 15:1403452.
PMID: 39036046
PMC: 11257984.
DOI: 10.3389/fendo.2024.1403452.
Fenta H, Zewotir T, Naidoo S, Naidoo R, Mwambi H
Sci Rep. 2024; 14(1):15801.
PMID: 38982206
PMC: 11233665.
DOI: 10.1038/s41598-024-65620-1.
Heart Failure Management through Telehealth: Expanding Care and Connecting Hearts.
Tedeschi A, Palazzini M, Trimarchi G, Conti N, Di Spigno F, Gentile P
J Clin Med. 2024; 13(9).
PMID: 38731120
PMC: 11084728.
DOI: 10.3390/jcm13092592.
Application of machine learning methods for predicting under-five mortality: analysis of Nigerian demographic health survey 2018 dataset.
Samuel O, Zewotir T, North D
BMC Med Inform Decis Mak. 2024; 24(1):86.
PMID: 38528495
PMC: 10962196.
DOI: 10.1186/s12911-024-02476-5.
Machine learning model and nomogram to predict the risk of heart failure hospitalization in peritoneal dialysis patients.
Xu L, Cao F, Wang L, Liu W, Gao M, Zhang L
Ren Fail. 2024; 46(1):2324071.
PMID: 38494197
PMC: 10946267.
DOI: 10.1080/0886022X.2024.2324071.
Application and Potential of Artificial Intelligence in Heart Failure: Past, Present, and Future.
Yoon M, Park J, Hur T, Hua C, Hussain M, Lee S
Int J Heart Fail. 2024; 6(1):11-19.
PMID: 38303917
PMC: 10827704.
DOI: 10.36628/ijhf.2023.0050.
Pre-Interventional Risk Assessment in The Elderly (PIRATE): Development of a scoring system to predict 30-day mortality using data of the Peri-Interventional Outcome Study in the Elderly.
Schenk A, Kowark A, Berger M, Rossaint R, Schmid M, Coburn M
PLoS One. 2023; 18(12):e0294431.
PMID: 38127877
PMC: 10734910.
DOI: 10.1371/journal.pone.0294431.
Machine learning based readmission and mortality prediction in heart failure patients.
Sabouri M, Bitarafan Rajabi A, Hajianfar G, Gharibi O, Mohebi M, Haddadi Avval A
Sci Rep. 2023; 13(1):18671.
PMID: 37907666
PMC: 10618467.
DOI: 10.1038/s41598-023-45925-3.
Risk prediction models for mortality and readmission in patients with acute heart failure: A protocol for systematic review, critical appraisal, and meta-analysis.
Zhang X, Zhou K, You L, Zhang J, Chen Y, Dai H
PLoS One. 2023; 18(7):e0283307.
PMID: 37523342
PMC: 10389735.
DOI: 10.1371/journal.pone.0283307.
A claims-based, machine-learning algorithm to identify patients with pulmonary arterial hypertension.
Hyde B, Paoli C, Panjabi S, Bettencourt K, Bell Lynum K, Selej M
Pulm Circ. 2023; 13(2):e12237.
PMID: 37287599
PMC: 10243208.
DOI: 10.1002/pul2.12237.
Recent advances in cardiac anaesthesia.
Ramachandran G, Sundar A, Venugopal V, Shah H, Dogra N
Indian J Anaesth. 2023; 67(1):78-84.
PMID: 36970488
PMC: 10034928.
DOI: 10.4103/ija.ija_972_22.
A deep learning system for heart failure mortality prediction.
Li D, Fu J, Zhao J, Qin J, Zhang L
PLoS One. 2023; 18(2):e0276835.
PMID: 36827436
PMC: 9956019.
DOI: 10.1371/journal.pone.0276835.
Clinical application of artificial intelligence algorithm for prediction of one-year mortality in heart failure patients.
Takahama H, Nishimura K, Ahsan B, Hamatani Y, Makino Y, Nakagawa S
Heart Vessels. 2023; 38(6):785-792.
PMID: 36802023
DOI: 10.1007/s00380-023-02237-w.
Applications of artificial intelligence and machine learning in heart failure.
Averbuch T, Sullivan K, Sauer A, Mamas M, Voors A, Gale C
Eur Heart J Digit Health. 2023; 3(2):311-322.
PMID: 36713018
PMC: 9707916.
DOI: 10.1093/ehjdh/ztac025.
Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care....
Peng S, Huang J, Liu X, Deng J, Sun C, Tang J
Front Cardiovasc Med. 2022; 9:994359.
PMID: 36312291
PMC: 9597462.
DOI: 10.3389/fcvm.2022.994359.
Detection of the Relationship between the Multi-Dimensional Data Sets of Serially Measured Blood Pressure and the Future Risk of Death in Healthy Elderly Japanese Population.
Nakayama M, Goto S, Sakano T, Goto S
J Atheroscler Thromb. 2022; 30(8):1002-1009.
PMID: 36273901
PMC: 10406660.
DOI: 10.5551/jat.63798.
Paradigm Shifts of Heart Failure Therapy: Do We Need Another Paradigm?.
Lee H, Oh B
Int J Heart Fail. 2022; 2(3):145-156.
PMID: 36262366
PMC: 9536678.
DOI: 10.36628/ijhf.2020.0010.