Human Online Adaptation to Changes in Prior Probability
Overview
Affiliations
Optimal sensory decision-making requires the combination of uncertain sensory signals with prior expectations. The effect of prior probability is often described as a shift in the decision criterion. Can observers track sudden changes in probability? To answer this question, we used a change-point detection paradigm that is frequently used to examine behavior in changing environments. In a pair of orientation-categorization tasks, we investigated the effects of changing probabilities on decision-making. In both tasks, category probability was updated using a sample-and-hold procedure: probability was held constant for a period of time before jumping to another probability state that was randomly selected from a predetermined set of probability states. We developed an ideal Bayesian change-point detection model in which the observer marginalizes over both the current run length (i.e., time since last change) and the current category probability. We compared this model to various alternative models that correspond to different strategies-from approximately Bayesian to simple heuristics-that the observers may have adopted to update their beliefs about probabilities. While a number of models provided decent fits to the data, model comparison favored a model in which probability is estimated following an exponential averaging model with a bias towards equal priors, consistent with a conservative bias, and a flexible variant of the Bayesian change-point detection model with incorrect beliefs. We interpret the former as a simpler, more biologically plausible explanation suggesting that the mechanism underlying change of decision criterion is a combination of on-line estimation of prior probability and a stable, long-term equal-probability prior, thus operating at two very different timescales.
Lutkenherm I, Locke S, Robinson O Comput Psychiatr. 2024; 8(1):70-84.
PMID: 38774427 PMC: 11104415. DOI: 10.5334/cpsy.102.
Traveling waves shape neural population dynamics enabling predictions and internal model updating.
Mohanta S, Cleveland D, Afrasiabi M, Rhone A, Gorska U, Cooper Borkenhagen M bioRxiv. 2024; .
PMID: 38260606 PMC: 10802392. DOI: 10.1101/2024.01.09.574848.
Studying the neural representations of uncertainty.
Walker E, Pohl S, Denison R, Barack D, Lee J, Block N Nat Neurosci. 2023; 26(11):1857-1867.
PMID: 37814025 DOI: 10.1038/s41593-023-01444-y.
Schlunegger D, Mast F iScience. 2023; 26(7):107123.
PMID: 37434696 PMC: 10331403. DOI: 10.1016/j.isci.2023.107123.
Environmental dynamics shape perceptual decision bias.
Charlton J, Mlynarski W, Bai Y, Hermundstad A, Goris R PLoS Comput Biol. 2023; 19(6):e1011104.
PMID: 37289753 PMC: 10249884. DOI: 10.1371/journal.pcbi.1011104.