» Articles » PMID: 31278272

Target Preference of Type III-A CRISPR-Cas Complexes at the Transcription Bubble

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jul 7
PMID 31278272
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Type III-A CRISPR-Cas systems are prokaryotic RNA-guided adaptive immune systems that use a protein-RNA complex, Csm, for transcription-dependent immunity against foreign DNA. Csm can cleave RNA and single-stranded DNA (ssDNA), but whether it targets one or both nucleic acids during transcription elongation is unknown. Here, we show that binding of a Thermus thermophilus (T. thermophilus) Csm (TthCsm) to a nascent transcript in a transcription elongation complex (TEC) promotes tethering but not direct contact of TthCsm with RNA polymerase (RNAP). Biochemical experiments show that both TthCsm and Staphylococcus epidermidis (S. epidermidis) Csm (SepCsm) cleave RNA transcripts, but not ssDNA, at the transcription bubble. Taken together, these results suggest that Type III systems primarily target transcripts, instead of unwound ssDNA in TECs, for immunity against double-stranded DNA (dsDNA) phages and plasmids. This reveals similarities between Csm and eukaryotic RNA interference, which also uses RNA-guided RNA targeting to silence actively transcribed genes.

Citing Articles

Mechanistic determinants and dynamics of cA6 synthesis in type III CRISPR-Cas effector complexes.

Jungfer K, Moravcik S, Garcia-Doval C, Knorlein A, Hall J, Jinek M Nucleic Acids Res. 2025; 53(2).

PMID: 39817514 PMC: 11734703. DOI: 10.1093/nar/gkae1277.


Cas10 relieves host growth arrest to facilitate spacer retention during type III-A CRISPR-Cas immunity.

Aviram N, Shilton A, Lyn N, Reis B, Brivanlou A, Marraffini L Cell Host Microbe. 2024; 32(12):2050-2062.e6.

PMID: 39626678 PMC: 11708336. DOI: 10.1016/j.chom.2024.11.005.


AcrIIIA1 is a protein-RNA anti-CRISPR complex that targets core Cas and accessory nucleases.

Chou-Zheng L, Howell O, Boyle T, Hossain M, Walker F, Sheriff E Nucleic Acids Res. 2024; 52(22):13490-13514.

PMID: 39551936 PMC: 11662646. DOI: 10.1093/nar/gkae1006.


Taxonomic Distribution, Phylogenetic Relationship, and Domain Conservation of CRISPR-Associated Cas Proteins.

Ranasinghe W, Gillette D, Ho A, Cho H, Choudhary M Bioinform Biol Insights. 2024; 18:11779322241274961.

PMID: 39397878 PMC: 11468465. DOI: 10.1177/11779322241274961.


Comprehensive analysis of the CRISPR-Cas systems in Streptococcus thermophilus strains isolated from traditional yogurts.

Ozcan A, Yibar A, Kiraz D, Kahraman Ilikkan O Antonie Van Leeuwenhoek. 2024; 117(1):63.

PMID: 38561518 DOI: 10.1007/s10482-024-01960-2.


References
1.
Kimanius D, Forsberg B, Scheres S, Lindahl E . Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife. 2016; 5. PMC: 5310839. DOI: 10.7554/eLife.18722. View

2.
Han W, Li Y, Deng L, Feng M, Peng W, Hallstrom S . A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res. 2016; 45(4):1983-1993. PMC: 5389615. DOI: 10.1093/nar/gkw1274. View

3.
Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V . A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science. 2017; 357(6351):605-609. DOI: 10.1126/science.aao0100. View

4.
Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas C, Siksnys V . Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition. Mol Cell. 2016; 62(2):295-306. DOI: 10.1016/j.molcel.2016.03.024. View

5.
Guo T, Bartesaghi A, Yang H, Falconieri V, Rao P, Merk A . Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex. Cell. 2017; 171(2):414-426.e12. PMC: 5683424. DOI: 10.1016/j.cell.2017.09.006. View