» Articles » PMID: 26848045

Bipartite Recognition of Target RNAs Activates DNA Cleavage by the Type III-B CRISPR-Cas System

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2016 Feb 6
PMID 26848045
Citations 127
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM.

Citing Articles

Mechanistic determinants and dynamics of cA6 synthesis in type III CRISPR-Cas effector complexes.

Jungfer K, Moravcik S, Garcia-Doval C, Knorlein A, Hall J, Jinek M Nucleic Acids Res. 2025; 53(2).

PMID: 39817514 PMC: 11734703. DOI: 10.1093/nar/gkae1277.


The influence of the copy number of invader on the fate of bacterial host cells in the antiviral defense by CRISPR-Cas10 DNases.

Yu Z, Xu J, Zhang Y, She Q Eng Microbiol. 2024; 3(4):100102.

PMID: 39628911 PMC: 11610955. DOI: 10.1016/j.engmic.2023.100102.


Cas10 relieves host growth arrest to facilitate spacer retention during type III-A CRISPR-Cas immunity.

Aviram N, Shilton A, Lyn N, Reis B, Brivanlou A, Marraffini L Cell Host Microbe. 2024; 32(12):2050-2062.e6.

PMID: 39626678 PMC: 11708336. DOI: 10.1016/j.chom.2024.11.005.


AcrIIIA1 is a protein-RNA anti-CRISPR complex that targets core Cas and accessory nucleases.

Chou-Zheng L, Howell O, Boyle T, Hossain M, Walker F, Sheriff E Nucleic Acids Res. 2024; 52(22):13490-13514.

PMID: 39551936 PMC: 11662646. DOI: 10.1093/nar/gkae1006.


Taxonomic Distribution, Phylogenetic Relationship, and Domain Conservation of CRISPR-Associated Cas Proteins.

Ranasinghe W, Gillette D, Ho A, Cho H, Choudhary M Bioinform Biol Insights. 2024; 18:11779322241274961.

PMID: 39397878 PMC: 11468465. DOI: 10.1177/11779322241274961.


References
1.
Osawa T, Inanaga H, Sato C, Numata T . Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog. Mol Cell. 2015; 58(3):418-30. DOI: 10.1016/j.molcel.2015.03.018. View

2.
Labrie S, Samson J, Moineau S . Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010; 8(5):317-27. DOI: 10.1038/nrmicro2315. View

3.
Terns R, Terns M . The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus. Biochem Soc Trans. 2013; 41(6):1416-21. PMC: 3996508. DOI: 10.1042/BST20130056. View

4.
Staals R, Zhu Y, Taylor D, Kornfeld J, Sharma K, Barendregt A . RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell. 2014; 56(4):518-30. PMC: 4342149. DOI: 10.1016/j.molcel.2014.10.005. View

5.
Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N, Terns R . Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol Cell. 2013; 52(1):146-52. PMC: 3864027. DOI: 10.1016/j.molcel.2013.09.008. View