» Articles » PMID: 31245697

A Chromosome-scale Assembly of the Model Desiccation Tolerant Grass

Overview
Journal Plant Direct
Specialty Biology
Date 2019 Jun 28
PMID 31245697
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

is an emerging model for desiccation tolerance and genome size evolution in grasses. A draft genome of Oropetium was recently sequenced, but the lack of a chromosome-scale assembly has hindered comparative analyses and downstream functional genomics. Here, we reassembled Oropetium, and anchored the genome into 10 chromosomes using high-throughput chromatin conformation capture (Hi-C) based chromatin interactions. A combination of high-resolution RNAseq data and homology-based gene prediction identified thousands of new, conserved gene models that were absent from the V1 assembly. This includes thousands of new genes with high expression across a desiccation timecourse. Comparison between the Sorghum and Oropetium genomes revealed a surprising degree of chromosome-level collinearity, and several chromosome pairs have near perfect synteny. Other chromosomes are collinear in the gene rich chromosome arms but have experienced pericentric translocations. Together, these resources will be useful for the grass-comparative genomic community and further establish Oropetium as a model resurrection plant.

Citing Articles

Development of a Reference Transcriptome and Identification of Differentially Expressed Genes Linked to Salt Stress in Salt Marsh Grass () along Delaware Coastal Regions.

Todd A, Bhide K, Hayford R, Ayyappan V, Subramani M, Chintapenta L Plants (Basel). 2024; 13(14).

PMID: 39065534 PMC: 11280579. DOI: 10.3390/plants13142008.


Convergent evolution of desiccation tolerance in grasses.

Marks R, van der Pas L, Schuster J, Gilman I, VanBuren R Nat Plants. 2024; 10(7):1112-1125.

PMID: 38906996 DOI: 10.1038/s41477-024-01729-5.


Identification and characterization of ACR gene family in maize for salt stress tolerance.

Fang H, Shan T, Gu H, Chen J, Qi Y, Li Y Front Plant Sci. 2024; 15:1381056.

PMID: 38745920 PMC: 11091409. DOI: 10.3389/fpls.2024.1381056.


Higher order polyploids exhibit enhanced desiccation tolerance in the grass Microchloa caffra.

Marks R, Delgado P, Makonya G, Cooper K, VanBuren R, Farrant J J Exp Bot. 2024; 75(11):3612-3623.

PMID: 38511472 PMC: 11156804. DOI: 10.1093/jxb/erae126.


Specific metabolic and cellular mechanisms of the vegetative desiccation tolerance in resurrection plants for adaptation to extreme dryness.

Liu J, Wang Y, Chen X, Tang L, Yang Y, Yang Z Planta. 2024; 259(2):47.

PMID: 38285274 DOI: 10.1007/s00425-023-04323-9.


References
1.
Ou S, Jiang N . LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol. 2017; 176(2):1410-1422. PMC: 5813529. DOI: 10.1104/pp.17.01310. View

2.
Wang Y, Tang H, DeBarry J, Tan X, Li J, Wang X . MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012; 40(7):e49. PMC: 3326336. DOI: 10.1093/nar/gkr1293. View

3.
Paterson A, Bowers J, Bruggmann R, Dubchak I, Grimwood J, Gundlach H . The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551-6. DOI: 10.1038/nature07723. View

4.
McCormick R, Truong S, Sreedasyam A, Jenkins J, Shu S, Sims D . The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2017; 93(2):338-354. DOI: 10.1111/tpj.13781. View

5.
Xiao L, Yang G, Zhang L, Yang X, Zhao S, Ji Z . The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. Proc Natl Acad Sci U S A. 2015; 112(18):5833-7. PMC: 4426394. DOI: 10.1073/pnas.1505811112. View