» Articles » PMID: 25902549

The Resurrection Genome of Boea Hygrometrica: A Blueprint for Survival of Dehydration

Abstract

"Drying without dying" is an essential trait in land plant evolution. Unraveling how a unique group of angiosperms, the Resurrection Plants, survive desiccation of their leaves and roots has been hampered by the lack of a foundational genome perspective. Here we report the ∼1,691-Mb sequenced genome of Boea hygrometrica, an important resurrection plant model. The sequence revealed evidence for two historical genome-wide duplication events, a compliment of 49,374 protein-coding genes, 29.15% of which are unique (orphan) to Boea and 20% of which (9,888) significantly respond to desiccation at the transcript level. Expansion of early light-inducible protein (ELIP) and 5S rRNA genes highlights the importance of the protection of the photosynthetic apparatus during drying and the rapid resumption of protein synthesis in the resurrection capability of Boea. Transcriptome analysis reveals extensive alternative splicing of transcripts and a focus on cellular protection strategies. The lack of desiccation tolerance-specific genome organizational features suggests the resurrection phenotype evolved mainly by an alteration in the control of dehydration response genes.

Citing Articles

(Gesneriaceae), a Peltate-Leaved New Species From the Dry-Hot Valley of the Jinsha River Basin, Yunnan, China.

Xie Z, Peng N, Zhang M, Ding G, Wen F, Kong H Ecol Evol. 2024; 14(10):e70442.

PMID: 39463745 PMC: 11502513. DOI: 10.1002/ece3.70442.


Convergent evolution of desiccation tolerance in grasses.

Marks R, van der Pas L, Schuster J, Gilman I, VanBuren R Nat Plants. 2024; 10(7):1112-1125.

PMID: 38906996 DOI: 10.1038/s41477-024-01729-5.


A chromosome-level genome reveals genome evolution and molecular basis of anthraquinone biosynthesis in Rheum palmatum.

Zhang T, Zhou L, Pu Y, Tang Y, Liu J, Yang L BMC Plant Biol. 2024; 24(1):261.

PMID: 38594606 PMC: 11005207. DOI: 10.1186/s12870-024-04972-2.


The genome of Haberlea rhodopensis provides insights into the mechanisms for tolerance to multiple extreme environments.

Gupta S, Petrov V, Garg V, Mueller-Roeber B, Fernie A, Nikoloski Z Cell Mol Life Sci. 2024; 81(1):117.

PMID: 38443747 PMC: 10914886. DOI: 10.1007/s00018-024-05140-3.


Specific metabolic and cellular mechanisms of the vegetative desiccation tolerance in resurrection plants for adaptation to extreme dryness.

Liu J, Wang Y, Chen X, Tang L, Yang Y, Yang Z Planta. 2024; 259(2):47.

PMID: 38285274 DOI: 10.1007/s00425-023-04323-9.


References
1.
Zhao Y, Xu T, Shen C, Xu G, Chen S, Song L . Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana. PLoS One. 2014; 9(5):e98098. PMC: 4031123. DOI: 10.1371/journal.pone.0098098. View

2.
Gechev T, Dinakar C, Benina M, Toneva V, Bartels D . Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci. 2012; 69(19):3175-86. PMC: 11114980. DOI: 10.1007/s00018-012-1088-0. View

3.
Oliver M, Guo L, Alexander D, Ryals J, Wone B, Cushman J . A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell. 2011; 23(4):1231-48. PMC: 3101564. DOI: 10.1105/tpc.110.082800. View

4.
Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A . Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol. 2008; 179(3):877-887. DOI: 10.1111/j.1469-8137.2008.02480.x. View

5.
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25-9. PMC: 3037419. DOI: 10.1038/75556. View