» Articles » PMID: 35976112

Chromosome-scale Genome Assemblies and Annotations for Poales Species Carex Cristatella, Carex Scoparia, Juncus Effusus, and Juncus Inflexus

Overview
Journal G3 (Bethesda)
Date 2022 Aug 17
PMID 35976112
Authors
Affiliations
Soon will be listed here.
Abstract

The majority of sequenced genomes in the monocots are from species belonging to Poaceae, which include many commercially important crops. Here, we expand the number of sequenced genomes from the monocots to include the genomes of 4 related cyperids: Carex cristatella and Carex scoparia from Cyperaceae and Juncus effusus and Juncus inflexus from Juncaceae. The high-quality, chromosome-scale genome sequences from these 4 cyperids were assembled by combining whole-genome shotgun sequencing of Nanopore long reads, Illumina short reads, and Hi-C sequencing data. Some members of the Cyperaceae and Juncaceae are known to possess holocentric chromosomes. We examined the repeat landscapes in our sequenced genomes to search for potential repeats associated with centromeres. Several large satellite repeat families, comprising 3.2-9.5% of our sequenced genomes, showed dispersed distribution of large satellite repeat clusters across all Carex chromosomes, with few instances of these repeats clustering in the same chromosomal regions. In contrast, most large Juncus satellite repeats were clustered in a single location on each chromosome, with sporadic instances of large satellite repeats throughout the Juncus genomes. Recognizable transposable elements account for about 20% of each of the 4 genome assemblies, with the Carex genomes containing more DNA transposons than retrotransposons while the converse is true for the Juncus genomes. These genome sequences and annotations will facilitate better comparative analysis within monocots.

Citing Articles

tRNA gene content, structure, and organization in the flowering plant lineage.

Monloy K, Planta J Front Plant Sci. 2025; 15:1486612.

PMID: 39764226 PMC: 11700998. DOI: 10.3389/fpls.2024.1486612.


The genome of Eleocharis vivipara elucidates the genetics of C-C photosynthetic plasticity and karyotype evolution in the Cyperaceae.

Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z J Integr Plant Biol. 2024; 66(11):2505-2527.

PMID: 39177373 PMC: 11583847. DOI: 10.1111/jipb.13765.


Chromosome-Scale Genome Assembly for Soft-Stem Bulrush (Schoenoplectus tabernaemontani) Confirms a Clade-Specific Whole-Genome Duplication in Cyperaceae.

Li Y, Ning Y, Zheng Y, Lou X, Pan Z, Dong S Genome Biol Evol. 2024; 16(7).

PMID: 38946297 PMC: 11251425. DOI: 10.1093/gbe/evae141.


The genome assembly of Carex breviculmis provides evidence for its phylogenetic localization and environmental adaptation.

Yuan T, Gao X, Xiang N, Wei P, Zhang G Ann Bot. 2024; 134(3):467-484.

PMID: 38822911 PMC: 11341672. DOI: 10.1093/aob/mcae085.


Chromosome-Scale Genome Assembly for Clubrush (Bolboschoenus planiculmis) Indicates a Karyotype with High Chromosome Number and Heterogeneous Centromere Distribution.

Ning Y, Li Y, Lin H, Kang E, Zhao Y, Dong S Genome Biol Evol. 2024; 16(3).

PMID: 38447062 PMC: 10959549. DOI: 10.1093/gbe/evae039.


References
1.
Can M, Wei W, Zi H, Bai M, Liu Y, Gao D . Genome sequence of Kobresia littledalei, the first chromosome-level genome in the family Cyperaceae. Sci Data. 2020; 7(1):175. PMC: 7289886. DOI: 10.1038/s41597-020-0518-3. View

2.
Burchardt P, Buddenhagen C, Gaeta M, Souza M, Marques A, Vanzela A . Holocentric Karyotype Evolution in Is Marked by Intense Numerical, Structural, and Genome Size Changes. Front Plant Sci. 2020; 11:536507. PMC: 7533669. DOI: 10.3389/fpls.2020.536507. View

3.
Benson D, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman D, Ostell J . GenBank. Nucleic Acids Res. 2012; 41(Database issue):D36-42. PMC: 3531190. DOI: 10.1093/nar/gks1195. View

4.
Bremer K . Gondwanan evolution of the grass alliance of families (Poales). Evolution. 2002; 56(7):1374-87. DOI: 10.1111/j.0014-3820.2002.tb01451.x. View

5.
Henikoff S, Ahmad K, Malik H . The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001; 293(5532):1098-102. DOI: 10.1126/science.1062939. View