» Articles » PMID: 31230860

Single-Cell Transcriptomic Analyses of Cell Fate Transitions During Human Cardiac Reprogramming

Overview
Journal Cell Stem Cell
Publisher Cell Press
Specialty Cell Biology
Date 2019 Jun 25
PMID 31230860
Citations 74
Authors
Affiliations
Soon will be listed here.
Abstract

Direct cellular reprogramming provides a powerful platform to study cell plasticity and dissect mechanisms underlying cell fate determination. Here, we report a single-cell transcriptomic study of human cardiac (hiCM) reprogramming that utilizes an analysis pipeline incorporating current data normalization methods, multiple trajectory prediction algorithms, and a cell fate index calculation we developed to measure reprogramming progression. These analyses revealed hiCM reprogramming-specific features and a decision point at which cells either embark on reprogramming or regress toward their original fibroblast state. In combination with functional screening, we found that immune-response-associated DNA methylation is required for hiCM induction and validated several downstream targets of reprogramming factors as necessary for productive hiCM reprograming. Collectively, this single-cell transcriptomics study provides detailed datasets that reveal molecular features underlying hiCM determination and rigorous analytical pipelines for predicting cell fate conversion.

Citing Articles

Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis.

Lin H, Wang X, Chung M, Cai S, Pan Y J Transl Med. 2025; 23(1):240.

PMID: 40016790 PMC: 11869441. DOI: 10.1186/s12967-024-06060-3.


Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming.

Peng W, Getachew A, Zhou Y Stem Cells. 2025; 43(3).

PMID: 39851272 PMC: 11904897. DOI: 10.1093/stmcls/sxaf002.


Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction.

Bois A, Grandela C, Gallant J, Mummery C, Menasche P NPJ Regen Med. 2025; 10(1):6.

PMID: 39843488 PMC: 11754855. DOI: 10.1038/s41536-025-00394-2.


Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming.

Mirizio G, Sampson S, Iwafuchi M Regen Ther. 2025; 28():246-252.

PMID: 39834592 PMC: 11745816. DOI: 10.1016/j.reth.2024.12.014.


Decoding aging in the heart via single cell dual omics of non-cardiomyocytes.

Song Y, Wang L, Wang H, Ma H, Xu J, Liu J iScience. 2024; 27(12):111469.

PMID: 39735437 PMC: 11681900. DOI: 10.1016/j.isci.2024.111469.


References
1.
Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye M . Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem. 2000; 275(2):1095-104. DOI: 10.1074/jbc.275.2.1095. View

2.
Lipowsky G, Bischoff F, Schwarzmaier P, Kraft R, Kostka S, Hartmann E . Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 2000; 19(16):4362-71. PMC: 302028. DOI: 10.1093/emboj/19.16.4362. View

3.
Shao W, Halachmi S, Brown M . ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol Cell Biol. 2002; 22(10):3358-72. PMC: 133794. DOI: 10.1128/MCB.22.10.3358-3372.2002. View

4.
Durham J, Brand O, Arnold M, Reynolds J, Muthukumar L, Weiler H . Myospryn is a direct transcriptional target for MEF2A that encodes a striated muscle, alpha-actinin-interacting, costamere-localized protein. J Biol Chem. 2006; 281(10):6841-9. DOI: 10.1074/jbc.M510499200. View

5.
Bujak M, Frangogiannis N . The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2006; 74(2):184-95. PMC: 1924687. DOI: 10.1016/j.cardiores.2006.10.002. View