6.
Buganim Y, Faddah D, Cheng A, Itskovich E, Markoulaki S, Ganz K
. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell. 2012; 150(6):1209-22.
PMC: 3457656.
DOI: 10.1016/j.cell.2012.08.023.
View
7.
Horisawa K, Suzuki A
. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proc Jpn Acad Ser B Phys Biol Sci. 2020; 96(4):131-158.
PMC: 7247973.
DOI: 10.2183/pjab.96.012.
View
8.
Suelves M, Carrio E, Nunez-Alvarez Y, Peinado M
. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics. 2016; 15(6):443-453.
DOI: 10.1093/bfgp/elw017.
View
9.
Li R, Liang J, Ni S, Zhou T, Qing X, Li H
. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010; 7(1):51-63.
DOI: 10.1016/j.stem.2010.04.014.
View
10.
Matsui S, Granitto M, Buckley M, Ludwig K, Koigi S, Shiley J
. Pioneer and PRDM transcription factors coordinate bivalent epigenetic states to safeguard cell fate. Mol Cell. 2024; 84(3):476-489.e10.
PMC: 10872272.
DOI: 10.1016/j.molcel.2023.12.007.
View
11.
Yang J, Bashkenova N, Zang R, Huang X, Wang J
. The roles of TET family proteins in development and stem cells. Development. 2020; 147(2).
PMC: 6983710.
DOI: 10.1242/dev.183129.
View
12.
Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y
. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ Res. 2014; 116(2):237-44.
PMC: 4299697.
DOI: 10.1161/CIRCRESAHA.116.305547.
View
13.
Li J, Wu X, Ke J, Lee M, Lan Q, Li J
. TET1 dioxygenase is required for FOXA2-associated chromatin remodeling in pancreatic beta-cell differentiation. Nat Commun. 2022; 13(1):3907.
PMC: 9263144.
DOI: 10.1038/s41467-022-31611-x.
View
14.
Tanay A, ODonnell A, Damelin M, Bestor T
. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc Natl Acad Sci U S A. 2007; 104(13):5521-6.
PMC: 1838490.
DOI: 10.1073/pnas.0609746104.
View
15.
Jaenisch R, Young R
. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 2008; 132(4):567-82.
PMC: 4142810.
DOI: 10.1016/j.cell.2008.01.015.
View
16.
Su Z, Niu W, Liu M, Zou Y, Zhang C
. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014; 5:3338.
PMC: 3966078.
DOI: 10.1038/ncomms4338.
View
17.
Horisawa K, Udono M, Ueno K, Ohkawa Y, Nagasaki M, Sekiya S
. The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors. Mol Cell. 2020; 79(4):660-676.e8.
DOI: 10.1016/j.molcel.2020.07.012.
View
18.
Costa Y, Ding J, Theunissen T, Faiola F, Hore T, Shliaha P
. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature. 2013; 495(7441):370-4.
PMC: 3606645.
DOI: 10.1038/nature11925.
View
19.
Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S
. Deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013; 502(7469):65-70.
DOI: 10.1038/nature12587.
View
20.
Kim M, Costello J
. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med. 2017; 49(4):e322.
PMC: 6130213.
DOI: 10.1038/emm.2017.10.
View