» Articles » PMID: 31068696

Charting Cellular Identity During Human in Vitro β-cell Differentiation

Overview
Journal Nature
Specialty Science
Date 2019 May 10
PMID 31068696
Citations 258
Authors
Affiliations
Soon will be listed here.
Abstract

In vitro differentiation of human stem cells can produce pancreatic β-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro β-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to β-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells. We show that endocrine cells maintain their identity in culture in the absence of exogenous growth factors, and that changes in gene expression associated with in vivo β-cell maturation are recapitulated in vitro. We implement a scalable re-aggregation technique to deplete non-endocrine cells and identify CD49a (also known as ITGA1) as a surface marker of the β-cell population, which allows magnetic sorting to a purity of 80%. Finally, we use a high-resolution sequencing time course to characterize gene-expression dynamics during the induction of human pancreatic endocrine cells, from which we develop a lineage model of in vitro β-cell differentiation. This study provides a perspective on human stem-cell differentiation, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine.

Citing Articles

Mechanistic elucidation of human pancreatic acinar development using single-cell transcriptome analysis on a human iPSC differentiation model.

Mima A, Kimura A, Ito R, Hatano Y, Tsujimoto H, Mae S Sci Rep. 2025; 15(1):4668.

PMID: 39920294 PMC: 11806057. DOI: 10.1038/s41598-025-88690-1.


Recent advances in pancreatic α-cell transdifferentiation for diabetes therapy.

Li Y, Zhu J, Yue C, Song S, Tian L, Wang Y Front Immunol. 2025; 16:1551372.

PMID: 39911402 PMC: 11794509. DOI: 10.3389/fimmu.2025.1551372.


Epigenetic memory as crucial contributing factor in directing the differentiation of human iPSC into pancreatic β-cells in vitro.

Diane A, Mu-U-Min R, Al-Siddiqi H Cell Tissue Res. 2025; 399(3):267-276.

PMID: 39883142 PMC: 11870940. DOI: 10.1007/s00441-025-03952-8.


Insulin-producing cells derived from expandable stem cell-derived endoderm are effective for the treatment of type 2 diabetes.

Yoshihara E Ann Transl Med. 2025; 12(6):121.

PMID: 39817230 PMC: 11729811. DOI: 10.21037/atm-24-129.


SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2.

Blaszczyk K, Jedrzejak A, Ziojla N, Shcheglova E, Szarafin K, Jankowski A Exp Mol Med. 2024; 57(1):131-150.

PMID: 39741186 PMC: 11799530. DOI: 10.1038/s12276-024-01380-2.