» Articles » PMID: 30989112

Structure and Mechanisms of Sodium-pumping KR2 Rhodopsin

Abstract

Rhodopsins are the most universal biological light-energy transducers and abundant phototrophic mechanisms that evolved on Earth and have a remarkable diversity and potential for biotechnological applications. Recently, the first sodium-pumping rhodopsin KR2 from was discovered and characterized. However, the existing structures of KR2 are contradictory, and the mechanism of Na pumping is not yet understood. Here, we present a structure of the cationic (non H) light-driven pump at physiological pH in its pentameric form. We also present 13 atomic structures and functional data on the KR2 and its mutants, including potassium pumps, which show that oligomerization of the microbial rhodopsin is obligatory for its biological function. The studies reveal the structure of KR2 at nonphysiological low pH where it acts as a proton pump. The structure provides new insights into the mechanisms of microbial rhodopsins and opens the way to a rational design of novel cation pumps for optogenetics.

Citing Articles

Structural mechanism underlying PHO1;H1-mediated phosphate transport in Arabidopsis.

Fang S, Yang Y, Zhang X, Yang Z, Zhang M, Zhao Y Nat Plants. 2025; 11(2):309-320.

PMID: 39838070 DOI: 10.1038/s41477-024-01895-6.


A Detailed View on the (Re)isomerization Dynamics in Microbial Rhodopsins Using Complementary Near-UV and IR Readouts.

Asido M, Lamm G, Lienert J, La Greca M, Kaur J, Mayer A Angew Chem Int Ed Engl. 2024; 64(4):e202416742.

PMID: 39523487 PMC: 11753611. DOI: 10.1002/anie.202416742.


A subgroup of light-driven sodium pumps with an additional Schiff base counterion.

Podoliak E, Lamm G, Marin E, Schellbach A, Fedotov D, Stetsenko A Nat Commun. 2024; 15(1):3119.

PMID: 38600129 PMC: 11006869. DOI: 10.1038/s41467-024-47469-0.


Protein dynamics of a light-driven Na pump rhodopsin probed using a tryptophan residue near the retinal chromophore.

Otomo A, Mizuno M, Inoue K, Kandori H, Mizutani Y Biophys Physicobiol. 2024; 20(Supplemental):e201016.

PMID: 38362331 PMC: 10865881. DOI: 10.2142/biophysico.bppb-v20.s016.


Custom Design of a Humidifier Chamber for Crystallization.

Marin E, Kovalev K, Poelman T, Veenstra R, Borshchevskiy V, Guskov A Cryst Growth Des. 2024; 24(1):325-330.

PMID: 38188264 PMC: 10767699. DOI: 10.1021/acs.cgd.3c01034.


References
1.
Murshudov G, Skubak P, Lebedev A, Pannu N, Steiner R, Nicholls R . REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):355-67. PMC: 3069751. DOI: 10.1107/S0907444911001314. View

2.
Abe-Yoshizumi R, Inoue K, Kato H, Nureki O, Kandori H . Role of Asn112 in a Light-Driven Sodium Ion-Pumping Rhodopsin. Biochemistry. 2016; 55(41):5790-5797. DOI: 10.1021/acs.biochem.6b00741. View

3.
Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H . Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: pH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2. J Phys Chem B. 2018; 122(18):4784-4792. DOI: 10.1021/acs.jpcb.8b01934. View

4.
Adams P, Afonine P, Bunkoczi G, Chen V, Davis I, Echols N . PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 2):213-21. PMC: 2815670. DOI: 10.1107/S0907444909052925. View

5.
Kabsch W . XDS. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 2):125-32. PMC: 2815665. DOI: 10.1107/S0907444909047337. View