The Persistence Length of Semiflexible Polymers in Lattice Monte Carlo Simulations
Overview
Affiliations
While applying computer simulations to study semiflexible polymers, it is a primary task to determine the persistence length that characterizes the chain stiffness. One frequently asked question concerns the relationship between persistence length and the bending constant of applied bending potential. In this paper, theoretical persistence lengths of polymers with two different bending potentials were analyzed and examined by using lattice Monte Carlo simulations. We found that the persistence length was consistent with theoretical predictions only in bond fluctuation model with cosine squared angle potential. The reason for this is that the theoretical persistence length is calculated according to a continuous bond angle, which is discrete in lattice simulations. In lattice simulations, the theoretical persistence length is larger than that in continuous simulations.
Genome wide nucleosome landscape shapes 3D chromatin organization.
Fouziya S, Krietenstein N, Mir U, Mieczkowski J, Khan M, Baba A Sci Adv. 2024; 10(23):eadn2955.
PMID: 38848364 PMC: 11160460. DOI: 10.1126/sciadv.adn2955.
Partition complex structure can arise from sliding and bridging of ParB dimers.
Connolley L, Schnabel L, Thanbichler M, Murray S Nat Commun. 2023; 14(1):4567.
PMID: 37516778 PMC: 10387095. DOI: 10.1038/s41467-023-40320-y.
Aswath S, Dey P, Vatti A ACS Omega. 2023; 8(18):16186-16193.
PMID: 37179616 PMC: 10173317. DOI: 10.1021/acsomega.3c00515.
He X, Yang Y, Han Y, Cao C, Zhang Z, Li L Proc Natl Acad Sci U S A. 2022; 120(1):e2209260120.
PMID: 36574668 PMC: 9910605. DOI: 10.1073/pnas.2209260120.
The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks.
Garcia Fernandez F, Fabre E Genes (Basel). 2022; 13(2).
PMID: 35205260 PMC: 8872016. DOI: 10.3390/genes13020215.