Genome Wide Nucleosome Landscape Shapes 3D Chromatin Organization
Authors
Affiliations
The hierarchical chromatin organization begins with formation of nucleosomes, which fold into chromatin domains punctuated by boundaries and ultimately chromosomes. In a hierarchal organization, lower levels shape higher levels. However, the dependence of higher-order 3D chromatin organization on the nucleosome-level organization has not been studied in cells. We investigated the relationship between nucleosome-level organization and higher-order chromatin organization by perturbing nucleosomes across the genome by deleting () and () chromatin remodeling factors in budding yeast. We find that changes in nucleosome-level properties are accompanied by changes in 3D chromatin organization. Short-range chromatin contacts up to a few kilo-base pairs decrease, chromatin domains weaken, and boundary strength decreases. Boundary strength scales with accessibility and moderately with width of nucleosome-depleted region. Change in nucleosome positioning seems to alter the stiffness of chromatin, which can affect formation of chromatin contacts. Our results suggest a biomechanical "bottom-up" mechanism by which nucleosome distribution across genome shapes 3D chromatin organization.