Background:
Ultrashort echo time (UTE) proton MRI has gained popularity for assessing lung structure and function in pulmonary imaging; however, the development of rapid biomarker extraction and regional quantification has lagged behind due to labor-intensive lung segmentation.
Purpose:
To evaluate a deep learning (DL) approach for automated lung segmentation to extract image-based biomarkers from functional lung imaging using 3D radial UTE oxygen-enhanced (OE) MRI.
Study Type:
Retrospective study aimed to evaluate a technical development.
Population:
Forty-five human subjects, including 16 healthy volunteers, 5 asthma, and 24 patients with cystic fibrosis.
Field Strength/sequence:
1.5T MRI, 3D radial UTE (TE = 0.08 msec) sequence.
Assessment:
Two 3D radial UTE volumes were acquired sequentially under normoxic (21% O ) and hyperoxic (100% O ) conditions. Automated segmentation of the lungs using 2D convolutional encoder-decoder based DL method, and the subsequent functional quantification via adaptive K-means were compared with the results obtained from the reference method, supervised region growing.
Statistical Tests:
Relative to the reference method, the performance of DL on volumetric quantification was assessed using Dice coefficient with 95% confidence interval (CI) for accuracy, two-sided Wilcoxon signed-rank test for computation time, and Bland-Altman analysis on the functional measure derived from the OE images.
Results:
The DL method produced strong agreement with supervised region growing for the right (Dice: 0.97; 95% CI = [0.96, 0.97]; P < 0.001) and left lungs (Dice: 0.96; 95% CI = [0.96, 0.97]; P < 0.001). The DL method averaged 46 seconds to generate the automatic segmentations in contrast to 1.93 hours using the reference method (P < 0.001). Bland-Altman analysis showed nonsignificant intermethod differences of volumetric (P ≥ 0.12) and functional measurements (P ≥ 0.34) in the left and right lungs.
Data Conclusion:
DL provides rapid, automated, and robust lung segmentation for quantification of regional lung function using UTE proton MRI.
Level Of Evidence:
2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1169-1181.
Citing Articles
Automated lung segmentation on chest MRI in children with cystic fibrosis.
Ringwald F, Wucherpfennig L, Hagen N, Mucke J, Kaletta S, Eichinger M
Front Med (Lausanne). 2024; 11:1401473.
PMID: 39606627
PMC: 11600534.
DOI: 10.3389/fmed.2024.1401473.
Automatic lung segmentation of magnetic resonance images: A new approach applied to healthy volunteers undergoing enhanced Deep-Inspiration-Breath-Hold for motion-mitigated 4D proton therapy of lung tumors.
Missimer J, Emert F, Lomax A, Weber D
Phys Imaging Radiat Oncol. 2024; 29:100531.
PMID: 38292650
PMC: 10825631.
DOI: 10.1016/j.phro.2024.100531.
Automated MRI Lung Segmentation and 3D Morphologic Features for Quantification of Neonatal Lung Disease.
Mairhormann B, Castelblanco A, Hafner F, Koliogiannis V, Haist L, Winter D
Radiol Artif Intell. 2023; 5(6):e220239.
PMID: 38074782
PMC: 10698600.
DOI: 10.1148/ryai.220239.
Combining neural networks and image synthesis to enable automatic thoracic cavity segmentation of hyperpolarized Xe MRI without proton scans.
Leewiwatwong S, Lu J, Dummer I, Yarnall K, Mummy D, Wang Z
Magn Reson Imaging. 2023; 103:145-155.
PMID: 37406744
PMC: 10528669.
DOI: 10.1016/j.mri.2023.07.001.
Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor, and Multi-disease Study.
Astley J, Biancardi A, Hughes P, Marshall H, Collier G, Chan H
J Magn Reson Imaging. 2023; 58(4):1030-1044.
PMID: 36799341
PMC: 10946727.
DOI: 10.1002/jmri.28643.
A Dual-Channel Deep Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton MRI.
Astley J, Biancardi A, Marshall H, Hughes P, Collier G, Smith L
J Magn Reson Imaging. 2022; 57(6):1878-1890.
PMID: 36373828
PMC: 10947587.
DOI: 10.1002/jmri.28519.
Semiautomatic assessment of respiratory dynamics using cine MRI in chronic obstructive pulmonary disease.
Sato H, Kawata N, Shimada A, Iwao Y, Ye C, Masuda Y
Eur J Radiol Open. 2022; 9:100442.
PMID: 36193450
PMC: 9525813.
DOI: 10.1016/j.ejro.2022.100442.
Quantification of lung ventilation defects on hyperpolarized MRI: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD study.
Zhang X, Angelini E, Haghpanah F, Laine A, Sun Y, Hiura G
Magn Reson Imaging. 2022; 92:140-149.
PMID: 35777684
PMC: 9957614.
DOI: 10.1016/j.mri.2022.06.016.
MRI lung lobe segmentation in pediatric cystic fibrosis patients using a recurrent neural network trained with publicly accessible CT datasets.
Pusterla O, Heule R, Santini F, Weikert T, Willers C, Andermatt S
Magn Reson Med. 2022; 88(1):391-405.
PMID: 35348244
PMC: 9314108.
DOI: 10.1002/mrm.29184.
Deep Learning for the Automatic Quantification of Pleural Plaques in Asbestos-Exposed Subjects.
Benlala I, Denis de Senneville B, Dournes G, Menant M, Gramond C, Thaon I
Int J Environ Res Public Health. 2022; 19(3).
PMID: 35162440
PMC: 8835296.
DOI: 10.3390/ijerph19031417.
Artificial intelligence in functional imaging of the lung.
San Jose Estepar R
Br J Radiol. 2021; 95(1132):20210527.
PMID: 34890215
PMC: 9153712.
DOI: 10.1259/bjr.20210527.
Preclinical MRI to Quantify Pulmonary Disease Severity and Trajectories in Poorly Characterized Mouse Models: A Pedagogical Example Using Data from Novel Transgenic Models of Lung Fibrosis.
Stecker I, Freeman M, Sitaraman S, Hall C, Niedbalski P, Hendricks A
J Magn Reson Open. 2021; 6-7.
PMID: 34414381
PMC: 8372031.
DOI: 10.1016/j.jmro.2021.100013.
Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times.
Weng A, Heidenreich J, Metz C, Veldhoen S, Bley T, Wech T
BMC Med Imaging. 2021; 21(1):79.
PMID: 33964892
PMC: 8106126.
DOI: 10.1186/s12880-021-00608-1.
Deep learning in structural and functional lung image analysis.
Astley J, Wild J, Tahir B
Br J Radiol. 2021; 95(1132):20201107.
PMID: 33877878
PMC: 9153705.
DOI: 10.1259/bjr.20201107.
Novel imaging techniques for cystic fibrosis lung disease.
Goralski J, Stewart N, Woods J
Pediatr Pulmonol. 2020; 56 Suppl 1:S40-S54.
PMID: 32592531
PMC: 7808406.
DOI: 10.1002/ppul.24931.
SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction.
Liu F, Samsonov A, Chen L, Kijowski R, Feng L
Magn Reson Med. 2019; 82(5):1890-1904.
PMID: 31166049
PMC: 6660404.
DOI: 10.1002/mrm.27827.