» Articles » PMID: 30859816

Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?

Overview
Journal Chem Rev
Specialty Chemistry
Date 2019 Mar 13
PMID 30859816
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

This review addresses concepts, approaches, tools, and outcomes of multiscale modeling used to design and optimize the current and next generation rechargeable battery cells. Different kinds of multiscale models are discussed and demystified with a particular emphasis on methodological aspects. The outcome is compared both to results of other modeling strategies as well as to the vast pool of experimental data available. Finally, the main challenges remaining and future developments are discussed.

Citing Articles

Enhanced Ion Solvation and Conductivity in Lithium-Ion Electrolytes via Tailored EMC-TMS Solvent Mixtures: A Molecular Dynamics Study.

Kasemchainan J, Teeraburanapong S, Suttipong M ACS Omega. 2025; 10(2):2141-2149.

PMID: 39866615 PMC: 11755145. DOI: 10.1021/acsomega.4c08854.


Unraveling fundamental characteristics of NaMgCl as a solid-state electrolyte for Na-ion batteries.

Zulueta Y, Fernandez-Gamboa J, Phung T, Pham-Ho M, Nguyen M RSC Adv. 2024; 14(45):33619-33628.

PMID: 39444946 PMC: 11497120. DOI: 10.1039/d4ra06490a.


A theoretical perspective on solid-state ionic interfaces.

Carrasco J Philos Trans A Math Phys Eng Sci. 2024; 382(2281):20230313.

PMID: 39246077 PMC: 11606440. DOI: 10.1098/rsta.2023.0313.


NaMCl rock-salt compounds with M = Mg, Ca, Ba, Zn, Sr as components for solid-state sodium ion batteries.

Zulueta Y, Pham-Ho M, Nguyen M RSC Adv. 2024; 14(30):21644-21652.

PMID: 38979451 PMC: 11228939. DOI: 10.1039/d4ra03533j.


A fast-charging/discharging and long-term stable artificial electrode enabled by space charge storage mechanism.

Zhao L, Wang T, Zuo F, Ju Z, Li Y, Li Q Nat Commun. 2024; 15(1):3778.

PMID: 38710689 PMC: 11074309. DOI: 10.1038/s41467-024-48215-2.


References
1.
Borodin O, Smith G, Geiculescu O, Creager S, Hallac B, DesMarteau D . Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. J Phys Chem B. 2006; 110(47):24266-74. DOI: 10.1021/jp0653104. View

2.
Mullinax J, Noid W . Generalized Yvon-Born-Green theory for molecular systems. Phys Rev Lett. 2010; 103(19):198104. DOI: 10.1103/PhysRevLett.103.198104. View

3.
Koddermann T, Reith D, Ludwig R . Comparison of force fields on the basis of various model approaches--how to design the best model for the [CnMIM][NTf2] family of ionic liquids. Chemphyschem. 2013; 14(14):3368-74. DOI: 10.1002/cphc.201300486. View

4.
Husch T, Yilmazer N, Balducci A, Korth M . Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: computing infrastructure and collective properties. Phys Chem Chem Phys. 2014; 17(5):3394-401. DOI: 10.1039/c4cp04338c. View

5.
Cerbelaud M, Lestriez B, Ferrando R, Videcoq A, Richard-Plouet M, Caldes M . Numerical and experimental study of suspensions containing carbon blacks used as conductive additives in composite electrodes for lithium batteries. Langmuir. 2014; 30(10):2660-9. DOI: 10.1021/la404693s. View