6.
Shim Y
. Computer simulation study of the solvation of lithium ions in ternary mixed carbonate electrolytes: free energetics, dynamics, and ion transport. Phys Chem Chem Phys. 2018; 20(45):28649-28657.
DOI: 10.1039/c8cp05190a.
View
7.
Jorgensen W, Tirado-Rives J
. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 2016; 110(6):1657-66.
DOI: 10.1021/ja00214a001.
View
8.
Franco A, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P
. Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?. Chem Rev. 2019; 119(7):4569-4627.
PMC: 6460402.
DOI: 10.1021/acs.chemrev.8b00239.
View
9.
Chang T, Dang L
. Li solvation and kinetics of Li-BF/PF ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories. J Chem Phys. 2017; 147(16):161709.
DOI: 10.1063/1.4991565.
View
10.
Dhananjay , Mallik B
. Cage Dynamics-Mediated High Ionic Transport in Li-O Batteries with a Hybrid Aprotic Electrolyte: LiTFSI, Sulfolane, and ,-Dimethylacetamide. J Phys Chem B. 2023; 127(13):2991-3000.
DOI: 10.1021/acs.jpcb.2c07829.
View
11.
Zaboli A, Raissi H, Hashemzadeh H, Farzad F
. Toward efficient electrodes for a high-performance fast-charge Li-ion battery: molecular dynamics simulation and DFT calculations. Phys Chem Chem Phys. 2023; 25(35):23937-23953.
DOI: 10.1039/d2cp06020e.
View
12.
Ong M, Verners O, Draeger E, van Duin A, Lordi V, Pask J
. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics. J Phys Chem B. 2014; 119(4):1535-45.
DOI: 10.1021/jp508184f.
View
13.
Bedrov D, Piquemal J, Borodin O, MacKerell Jr A, Roux B, Schroder C
. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem Rev. 2019; 119(13):7940-7995.
PMC: 6620131.
DOI: 10.1021/acs.chemrev.8b00763.
View
14.
Li M, Wang C, Chen Z, Xu K, Lu J
. New Concepts in Electrolytes. Chem Rev. 2020; 120(14):6783-6819.
DOI: 10.1021/acs.chemrev.9b00531.
View
15.
Diederichsen K, Terrell R, McCloskey B
. Counterion Transport and Transference Number in Aqueous and Nonaqueous Short-Chain Polyelectrolyte Solutions. J Phys Chem B. 2019; 123(50):10858-10867.
DOI: 10.1021/acs.jpcb.9b09517.
View
16.
Leven I, Hao H, Tan S, Guan X, Penrod K, Akbarian D
. Recent Advances for Improving the Accuracy, Transferability, and Efficiency of Reactive Force Fields. J Chem Theory Comput. 2021; 17(6):3237-3251.
DOI: 10.1021/acs.jctc.1c00118.
View
17.
Kang G, Zhong G, Ma J, Yin R, Cai K, Jia T
. Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery. iScience. 2022; 25(12):105710.
PMC: 9791360.
DOI: 10.1016/j.isci.2022.105710.
View
18.
Bhargava B, Balasubramanian S
. Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J Chem Phys. 2007; 127(11):114510.
DOI: 10.1063/1.2772268.
View
19.
Van der Ven A, Deng Z, Banerjee S, Ong S
. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chem Rev. 2020; 120(14):6977-7019.
DOI: 10.1021/acs.chemrev.9b00601.
View
20.
Yao N, Chen X, Fu Z, Zhang Q
. Applying Classical, , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev. 2022; 122(12):10970-11021.
DOI: 10.1021/acs.chemrev.1c00904.
View