» Articles » PMID: 27019986

Ion-mediated Charge Transport in Ionomeric Electrolytes

Overview
Journal Soft Matter
Specialties Biochemistry
Chemistry
Date 2016 Mar 30
PMID 27019986
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Ionomers, or single-ion conductors, serve as a model system to study ion transport in polymeric systems. Conductivity is a system property that depends on the net charge transport in the system. The mechanism through which ions are transported can dramatically change the contribution of an ion's self-motion (i.e. diffusion coefficient) to the conductivity of the system. For example, positive and negative ions diffusing as a pair have no net contribution to conductivity. In a coarse-grained molecular dynamics simulation of sodium-neutralized poly(PEO-co-sulfoisophthalate), we show that ion transport is mediated through consecutive coordination with ion pairs and higher order clusters due to the high density of ions. This transport mechanism is highly efficient and shows evidence of cation relaying. We show that larger ion aggregates can serve as ion-conducting paths for positive charges, and demonstrate how a highly ordered ion aggregate network can improve conductivity by enhancing correlated ion transport.

Citing Articles

A three-dimensional (3-D) meshfree-based computational model to investigate stress-strain-time relationships of plant cells during drying.

Rathnayaka C, Karunasena H, Wijerathne W, Senadeera W, Gu Y PLoS One. 2020; 15(7):e0235712.

PMID: 32634165 PMC: 7340284. DOI: 10.1371/journal.pone.0235712.


Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?.

Franco A, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P Chem Rev. 2019; 119(7):4569-4627.

PMID: 30859816 PMC: 6460402. DOI: 10.1021/acs.chemrev.8b00239.