Koul M, Kaushik S, Singh K, Sharma D
Brief Bioinform. 2025; 26(2).
PMID: 40063348
PMC: 11892104.
DOI: 10.1093/bib/bbaf084.
Beltran J, Herrera-Belen L, Yanez A, Jimenez L
Sci Rep. 2024; 14(1):27108.
PMID: 39511292
PMC: 11543823.
DOI: 10.1038/s41598-024-77028-y.
Medina-Ortiz D, Contreras S, Fernandez D, Soto-Garcia N, Moya I, Cabas-Mora G
Int J Mol Sci. 2024; 25(16).
PMID: 39201537
PMC: 11487388.
DOI: 10.3390/ijms25168851.
de Llano Garcia D, Marrero-Ponce Y, Aguero-Chapin G, Ferri F, Antunes A, Martinez-Rios F
Antibiotics (Basel). 2024; 13(8).
PMID: 39200068
PMC: 11350826.
DOI: 10.3390/antibiotics13080768.
Goles M, Daza A, Cabas-Mora G, Sarmiento-Varon L, Sepulveda-Yanez J, Anvari-Kazemabad H
Brief Bioinform. 2024; 25(4).
PMID: 38856172
PMC: 11163380.
DOI: 10.1093/bib/bbae275.
DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm.
Ullah M, Akbar S, Raza A, Zou Q
Bioinformatics. 2024; 40(5).
PMID: 38710482
PMC: 11256913.
DOI: 10.1093/bioinformatics/btae305.
A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy.
Guan J, Yao L, Xie P, Chung C, Huang Y, Chiang Y
Brief Bioinform. 2024; 25(3).
PMID: 38706321
PMC: 11070730.
DOI: 10.1093/bib/bbae208.
Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model.
Akbar S, Raza A, Zou Q
BMC Bioinformatics. 2024; 25(1):102.
PMID: 38454333
PMC: 10921744.
DOI: 10.1186/s12859-024-05726-5.
Current Development of Data Resources and Bioinformatics Tools for Anticoronavirus Peptide.
Li B, Li M, Lu C, Wu Y, Chen H, He B
Curr Med Chem. 2024; 31(26):4079-4099.
PMID: 38265399
DOI: 10.2174/0109298673264218231121104407.
Analysis, Modeling, and Target-Specific Predictions of Linear Peptides Inhibiting Virus Entry.
Vishnepolsky B, Grigolava M, Gabrielian A, Rosenthal A, Hurt D, Tartakovsky M
ACS Omega. 2023; 8(48):46218-46226.
PMID: 38075802
PMC: 10701718.
DOI: 10.1021/acsomega.3c07521.
VirusHound-I: prediction of viral proteins involved in the evasion of host adaptive immune response using the random forest algorithm and generative adversarial network for data augmentation.
Beltran J, Belen L, Farias J, Zamorano M, Lefin N, Miranda J
Brief Bioinform. 2023; 25(1).
PMID: 38033292
PMC: 10753651.
DOI: 10.1093/bib/bbad434.
Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides.
Lefin N, Herrera-Belen L, Farias J, Beltran J
Mol Divers. 2023; 28(4):2365-2374.
PMID: 37626205
DOI: 10.1007/s11030-023-10718-3.
Combined charge and hydrophobicity-guided screening of antibacterial peptides: two-level approach to predict antibacterial activity and efficacy.
Bale A, Dutta A, Mitra D
Amino Acids. 2023; 55(7):853-867.
PMID: 37248437
DOI: 10.1007/s00726-023-03274-5.
AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.
Lin T, Sun Y, Wang C, Cheng W, Lu I, Lin C
Bioinform Adv. 2023; 2(1):vbac080.
PMID: 36699402
PMC: 9710571.
DOI: 10.1093/bioadv/vbac080.
Computer-aided discovery, design, and investigation of COVID-19 therapeutics.
Chang C, Hsu H, Wu T, Liou J
Tzu Chi Med J. 2022; 34(3):276-286.
PMID: 35912059
PMC: 9333103.
DOI: 10.4103/tcmj.tcmj_318_21.
Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses.
Sukmarini L
Molecules. 2022; 27(9).
PMID: 35565968
PMC: 9101517.
DOI: 10.3390/molecules27092619.
VirVACPRED: A Web Server for Prediction of Protective Viral Antigens.
Herrera-Bravo J, Farias J, Contreras F, Herrera-Belen L, Norambuena J, Beltran J
Int J Pept Res Ther. 2021; 28(1):35.
PMID: 34934411
PMC: 8679566.
DOI: 10.1007/s10989-021-10345-2.
Antimicrobial Peptides: An Update on Classifications and Databases.
Hafeez A, Jiang X, Bergen P, Zhu Y
Int J Mol Sci. 2021; 22(21).
PMID: 34769122
PMC: 8583803.
DOI: 10.3390/ijms222111691.
Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2.
Manavalan B, Basith S, Lee G
Brief Bioinform. 2021; 23(1).
PMID: 34595489
PMC: 8500067.
DOI: 10.1093/bib/bbab412.
ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides.
Timmons P, Hewage C
Brief Bioinform. 2021; 22(6).
PMID: 34297817
PMC: 8575049.
DOI: 10.1093/bib/bbab258.