» Articles » PMID: 30802694

AntiVPP 1.0: A Portable Tool for Prediction of Antiviral Peptides

Overview
Journal Comput Biol Med
Publisher Elsevier
Date 2019 Feb 26
PMID 30802694
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Viruses are worldwide pathogens with a high impact on the human population. Despite the constant efforts to fight viral infections, there is a need to discover and design new drug candidates. Antiviral peptides are molecules with confirmed activity and constitute excellent alternatives for the treatment of viral infections. In the present study, we developed AntiVPP 1.0, an accurate bioinformatic tool that uses the Random Forest algorithm for antiviral peptide predictions. The model of AntiVPP 1.0 for antiviral peptide predictions uses several features of 1088 peptides for training and validation. During the validation of the model we achieved the TPR = 0.87, SPC = 0.97, ACC = 0.93 and MCC = 0.87 performance measures, which were indicative of a robust model. AntiVPP 1.0 is a fast, accurate and intuitive software focused on the assessment of antiviral peptides candidates. AntiVPP 1.0 is available at https://github.com/bio-coding/AntiVPP.

Citing Articles

VITALdb: to select the best viroinformatics tools for a desired virus or application.

Koul M, Kaushik S, Singh K, Sharma D Brief Bioinform. 2025; 26(2).

PMID: 40063348 PMC: 11892104. DOI: 10.1093/bib/bbaf084.


Prediction of viral oncoproteins through the combination of generative adversarial networks and machine learning techniques.

Beltran J, Herrera-Belen L, Yanez A, Jimenez L Sci Rep. 2024; 14(1):27108.

PMID: 39511292 PMC: 11543823. DOI: 10.1038/s41598-024-77028-y.


Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides.

Medina-Ortiz D, Contreras S, Fernandez D, Soto-Garcia N, Moya I, Cabas-Mora G Int J Mol Sci. 2024; 25(16).

PMID: 39201537 PMC: 11487388. DOI: 10.3390/ijms25168851.


Innovative Alignment-Based Method for Antiviral Peptide Prediction.

de Llano Garcia D, Marrero-Ponce Y, Aguero-Chapin G, Ferri F, Antunes A, Martinez-Rios F Antibiotics (Basel). 2024; 13(8).

PMID: 39200068 PMC: 11350826. DOI: 10.3390/antibiotics13080768.


Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.

Goles M, Daza A, Cabas-Mora G, Sarmiento-Varon L, Sepulveda-Yanez J, Anvari-Kazemabad H Brief Bioinform. 2024; 25(4).

PMID: 38856172 PMC: 11163380. DOI: 10.1093/bib/bbae275.


References
1.
Shartouny J, Jacob J . Mining the tree of life: Host defense peptides as antiviral therapeutics. Semin Cell Dev Biol. 2018; 88:147-155. DOI: 10.1016/j.semcdb.2018.03.001. View

2.
Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M . Synthetic therapeutic peptides: science and market. Drug Discov Today. 2009; 15(1-2):40-56. DOI: 10.1016/j.drudis.2009.10.009. View

3.
Craik D, Fairlie D, Liras S, Price D . The future of peptide-based drugs. Chem Biol Drug Des. 2012; 81(1):136-47. DOI: 10.1111/cbdd.12055. View

4.
Meher P, Sahu T, Saini V, Rao A . Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC. Sci Rep. 2017; 7:42362. PMC: 5304217. DOI: 10.1038/srep42362. View

5.
Klein P, Kanehisa M, Delisi C . Prediction of protein function from sequence properties. Discriminant analysis of a data base. Biochim Biophys Acta. 1984; 787(3):221-6. DOI: 10.1016/0167-4838(84)90312-1. View