» Articles » PMID: 36699402

AI4AVP: an Antiviral Peptides Predictor in Deep Learning Approach with Generative Adversarial Network Data Augmentation

Overview
Journal Bioinform Adv
Specialty Biology
Date 2023 Jan 26
PMID 36699402
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Antiviral peptides (AVPs) from various sources suggest the possibility of developing peptide drugs for treating viral diseases. Because of the increasing number of identified AVPs and the advances in deep learning theory, it is reasonable to experiment with peptide drug design using methods.

Results: We collected the most up-to-date AVPs and used deep learning to construct a sequence-based binary classifier. A generative adversarial network was employed to augment the number of AVPs in the positive training dataset and enable our deep learning convolutional neural network (CNN) model to learn from the negative dataset. Our classifier outperformed other state-of-the-art classifiers when using the testing dataset. We have placed the trained classifiers on a user-friendly web server, AI4AVP, for the research community.

Availability And Implementation: AI4AVP is freely accessible at http://axp.iis.sinica.edu.tw/AI4AVP/; codes and datasets for the peptide GAN and the AVP predictor CNN are available at https://github.com/lsbnb/amp_gan and https://github.com/LinTzuTang/AI4AVP_predictor.

Supplementary Information: Supplementary data are available at online.

Citing Articles

Exploring the repository of de novo-designed bifunctional antimicrobial peptides through deep learning.

Dong R, Liu R, Liu Z, Liu Y, Zhao G, Li H Elife. 2025; 13.

PMID: 40079572 PMC: 11906162. DOI: 10.7554/eLife.97330.


VITALdb: to select the best viroinformatics tools for a desired virus or application.

Koul M, Kaushik S, Singh K, Sharma D Brief Bioinform. 2025; 26(2).

PMID: 40063348 PMC: 11892104. DOI: 10.1093/bib/bbaf084.


Unlocking Antimicrobial Peptides: In Silico Proteolysis and Artificial Intelligence-Driven Discovery from Cnidarian Omics.

Barroso R, Aguero-Chapin G, Sousa R, Marrero-Ponce Y, Antunes A Molecules. 2025; 30(3).

PMID: 39942653 PMC: 11820242. DOI: 10.3390/molecules30030550.


Therapeutic peptide development revolutionized: Harnessing the power of artificial intelligence for drug discovery.

Hashemi S, Vosough P, Taghizadeh S, Savardashtaki A Heliyon. 2024; 10(22):e40265.

PMID: 39605829 PMC: 11600032. DOI: 10.1016/j.heliyon.2024.e40265.


Prediction of viral oncoproteins through the combination of generative adversarial networks and machine learning techniques.

Beltran J, Herrera-Belen L, Yanez A, Jimenez L Sci Rep. 2024; 14(1):27108.

PMID: 39511292 PMC: 11543823. DOI: 10.1038/s41598-024-77028-y.


References
1.
Muller A, Gabernet G, Hiss J, Schneider G . modlAMP: Python for antimicrobial peptides. Bioinformatics. 2017; 33(17):2753-2755. DOI: 10.1093/bioinformatics/btx285. View

2.
Liu Q, Chen S, Jiang R, Wong W . Simultaneous deep generative modeling and clustering of single cell genomic data. Nat Mach Intell. 2021; 3(6):536-544. PMC: 8223760. DOI: 10.1038/s42256-021-00333-y. View

3.
Chen Z, Zhao P, Li F, Leier A, Marquez-Lago T, Wang Y . iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics. 2018; 34(14):2499-2502. PMC: 6658705. DOI: 10.1093/bioinformatics/bty140. View

4.
Chowdhury A, Reehl S, Kehn-Hall K, Bishop B, Webb-Robertson B . Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance. Sci Rep. 2020; 10(1):19260. PMC: 7648056. DOI: 10.1038/s41598-020-76161-8. View

5.
Agarwal G, Gabrani R . Antiviral Peptides: Identification and Validation. Int J Pept Res Ther. 2020; 27(1):149-168. PMC: 7233194. DOI: 10.1007/s10989-020-10072-0. View