» Articles » PMID: 30792304

Hachimoji DNA and RNA: A Genetic System with Eight Building Blocks

Abstract

We report DNA- and RNA-like systems built from eight nucleotide "letters" (hence the name "hachimoji") that form four orthogonal pairs. These synthetic systems meet the structural requirements needed to support Darwinian evolution, including a polyelectrolyte backbone, predictable thermodynamic stability, and stereoregular building blocks that fit a Schrödinger aperiodic crystal. Measured thermodynamic parameters predict the stability of hachimoji duplexes, allowing hachimoji DNA to increase the information density of natural terran DNA. Three crystal structures show that the synthetic building blocks do not perturb the aperiodic crystal seen in the DNA double helix. Hachimoji DNA was then transcribed to give hachimoji RNA in the form of a functioning fluorescent hachimoji aptamer. These results expand the scope of molecular structures that might support life, including life throughout the cosmos.

Citing Articles

Cancer cell target discovery: comparing laboratory evolution of expanded DNA six-nucleotide alphabets with standard four-nucleotide alphabets.

Shaker S, Li J, Wan S, Xuan H, Long J, Cao H Nucleic Acids Res. 2025; 53(4).

PMID: 39950344 PMC: 11826092. DOI: 10.1093/nar/gkaf072.


A practical DNA data storage using an expanded alphabet introducing 5-methylcytosine.

Liu D, Xu D, Shi L, Zhang J, Bi K, Luo B GigaByte. 2025; 2025:gigabyte147.

PMID: 39906332 PMC: 11791762. DOI: 10.46471/gigabyte.147.


Harnessing Non-standard Nucleic Acids for Highly Sensitive Icosaplex (20-Plex) Detection of Microbial Threats for Environmental Surveillance.

Kawabe H, Manfio L, Magana Pena S, Zhou N, Bradley K, Chen C ACS Synth Biol. 2025; 14(2):470-484.

PMID: 39898969 PMC: 11854376. DOI: 10.1021/acssynbio.4c00619.


Sensing Hachimoji DNA Bases with Janus MoSH Monolayer Nanodevice: Insights from Density Functional Theory (DFT) and Non-Equilibrium Green's Function Analysis.

Babar V, Sharma S, Shaikh A, Oliva R, Chawla M, Cavallo L ACS Omega. 2024; 9(49):48173-48184.

PMID: 39676917 PMC: 11635677. DOI: 10.1021/acsomega.4c05356.


Recent advances in aptamer discovery, modification and improving performance.

Fallah A, Fooladi A, Havaei S, Mahboobi M, Sedighian H Biochem Biophys Rep. 2024; 40:101852.

PMID: 39525567 PMC: 11546948. DOI: 10.1016/j.bbrep.2024.101852.


References
1.
Goodman M . On the wagon--DNA polymerase joins "H-bonds anonymous". Nat Biotechnol. 1999; 17(7):640-1. DOI: 10.1038/10852. View

2.
Cote M, Yohannan S, Georgiadis M . Use of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase to facilitate crystallization and analysis of a pseudo-16-mer DNA molecule containing G-A mispairs. Acta Crystallogr D Biol Crystallogr. 2000; 56(Pt 9):1120-31. DOI: 10.1107/s0907444900008246. View

3.
Hirao I, Ohtsuki T, Fujiwara T, Mitsui T, Yokogawa T, Okuni T . An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol. 2002; 20(2):177-82. DOI: 10.1038/nbt0202-177. View

4.
Lu X, Olson W . 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003; 31(17):5108-21. PMC: 212791. DOI: 10.1093/nar/gkg680. View

5.
Watson J, Crick F . Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953; 171(4356):737-8. DOI: 10.1038/171737a0. View