» Articles » PMID: 30742040

Fast Interpolation-based T-SNE for Improved Visualization of Single-cell RNA-seq Data

Overview
Journal Nat Methods
Date 2019 Feb 12
PMID 30742040
Citations 171
Authors
Affiliations
Soon will be listed here.
Abstract

t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps .

Citing Articles

Distinct gene regulatory dynamics drive skeletogenic cell fate convergence during vertebrate embryogenesis.

Wang M, Di Pietro-Torres A, Feregrino C, Luxey M, Moreau C, Fischer S Nat Commun. 2025; 16(1):2187.

PMID: 40038298 PMC: 11880379. DOI: 10.1038/s41467-025-57480-8.


A recursive embedding and clustering technique for unraveling asymptomatic kidney disease using laboratory data and machine learning.

Alqaissi E, Algarni A, Alshehri M, Alkhaldy H, Alshehri A Sci Rep. 2025; 15(1):5820.

PMID: 39962186 PMC: 11832896. DOI: 10.1038/s41598-025-89499-8.


Dimensionality reduction for visualizing spatially resolved profiling data using SpaSNE.

Zhou Y, Tang C, Xiao X, Zhan X, Wang T, Xiao G Gigascience. 2025; 14.

PMID: 39960663 PMC: 11831803. DOI: 10.1093/gigascience/giaf002.


Machine Learning Methods in Clinical Flow Cytometry.

Spies N, Rangel A, English P, Morrison M, OFallon B, Ng D Cancers (Basel). 2025; 17(3).

PMID: 39941850 PMC: 11816335. DOI: 10.3390/cancers17030483.


Exploring RNA-Seq Data Analysis Through Visualization Techniques and Tools: A Systematic Review of Opportunities and Limitations for Clinical Applications.

Manzoor F, Tsurgeon C, Gupta V Bioengineering (Basel). 2025; 12(1).

PMID: 39851330 PMC: 11760846. DOI: 10.3390/bioengineering12010056.


References
1.
Galili T, OCallaghan A, Sidi J, Sievert C . heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics. 2017; 34(9):1600-1602. PMC: 5925766. DOI: 10.1093/bioinformatics/btx657. View

2.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View

3.
Belkina A, Ciccolella C, Anno R, Halpert R, Spidlen J, Snyder-Cappione J . Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat Commun. 2019; 10(1):5415. PMC: 6882880. DOI: 10.1038/s41467-019-13055-y. View

4.
Li H, Linderman G, Szlam A, Stanton K, Kluger Y, Tygert M . Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis. ACM Trans Math Softw. 2017; 43(3). PMC: 5625842. DOI: 10.1145/3004053. View

5.
Linderman G, Steinerberger S . Clustering with t-SNE, provably. SIAM J Math Data Sci. 2020; 1(2):313-332. PMC: 7561036. DOI: 10.1137/18m1216134. View