» Articles » PMID: 30693553

Powerful Testing Via Hierarchical Linkage Disequilibrium in Haplotype Association Studies

Overview
Journal Biom J
Specialty Public Health
Date 2019 Jan 30
PMID 30693553
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Marginal tests based on individual SNPs are routinely used in genetic association studies. Studies have shown that haplotype-based methods may provide more power in disease mapping than methods based on single markers when, for example, multiple disease-susceptibility variants occur within the same gene. A limitation of haplotype-based methods is that the number of parameters increases exponentially with the number of SNPs, inducing a commensurate increase in the degrees of freedom and weakening the power to detect associations. To address this limitation, we introduce a hierarchical linkage disequilibrium model for disease mapping, based on a reparametrization of the multinomial haplotype distribution, where every parameter corresponds to the cumulant of each possible subset of a set of loci. This hierarchy present in the parameters enables us to employ flexible testing strategies over a range of parameter sets: from standard single SNP analyses through the full haplotype distribution tests, reducing degrees of freedom and increasing the power to detect associations. We show via extensive simulations that our approach maintains the type I error at nominal level and has increased power under many realistic scenarios, as compared to single SNP and standard haplotype-based studies. To evaluate the performance of our proposed methodology in real data, we analyze genome-wide data from the Wellcome Trust Case-Control Consortium.

Citing Articles

HTRX: an R package for learning non-contiguous haplotypes associated with a phenotype.

Yang Y, Lawson D Bioinform Adv. 2023; 3(1):vbad038.

PMID: 37033465 PMC: 10074024. DOI: 10.1093/bioadv/vbad038.


Genome-wide haplotype association study in imaging genetics using whole-brain sulcal openings of 16,304 UK Biobank subjects.

Karkar S, Dandine-Roulland C, Mangin J, Guen Y, Philippe C, Deleuze J Eur J Hum Genet. 2021; 29(9):1424-1437.

PMID: 33664500 PMC: 8440755. DOI: 10.1038/s41431-021-00827-8.


Powerful testing via hierarchical linkage disequilibrium in haplotype association studies.

Balliu B, Houwing-Duistermaat J, Bohringer S Biom J. 2019; 61(3):747-768.

PMID: 30693553 PMC: 6637384. DOI: 10.1002/bimj.201800053.

References
1.
Lewontin R . The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964; 49(1):49-67. PMC: 1210557. DOI: 10.1093/genetics/49.1.49. View

2.
Epstein M, Satten G . Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet. 2003; 73(6):1316-29. PMC: 1180397. DOI: 10.1086/380204. View

3.
Hindorff L, Sethupathy P, Junkins H, Ramos E, Mehta J, Collins F . Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009; 106(23):9362-7. PMC: 2687147. DOI: 10.1073/pnas.0903103106. View

4.
Tavtigian S, Simard J, Teng D, Abtin V, Baumgard M, Beck A . A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet. 2001; 27(2):172-80. DOI: 10.1038/84808. View

5.
Zaykin D, Westfall P, Young S, Karnoub M, Wagner M, Ehm M . Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered. 2002; 53(2):79-91. DOI: 10.1159/000057986. View