» Articles » PMID: 30680319

Multivariate Learning Framework for Long-term Adaptation in the Artificial Pancreas

Overview
Date 2019 Jan 26
PMID 30680319
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The long-term use of the artificial pancreas (AP) requires an automated insulin delivery algorithm that can learn and adapt with the growth, development, and lifestyle changes of patients. In this work, we introduce a data-driven AP adaptation method for improved glucose management in a home environment. A two-phase Bayesian optimization assisted parameter learning algorithm is proposed to adapt basal and carbohydrate-ratio profile, and key feedback control parameters. The method is evaluated on the basis of the 111-adult cohort of the FDA-accepted UVA/Padova type 1 diabetes mellitus simulator through three scenarios with lifestyle disturbances and incorrect initial parameters. For all the scenarios, the proposed method is able to robustly adapt AP parameters for improved glycemic regulation performance in terms of percent time in the euglycemic range [70, 180] mg/dl without causing risk of hypoglycemia in terms of percent time below 70 mg/dl.

Citing Articles

design and validation of a time-varying PID controller for an artificial pancreas with intraperitoneal insulin delivery and glucose sensing.

Libera A, Toffanin C, Drecogna M, Galderisi A, Pillonetto G, Cobelli C APL Bioeng. 2023; 7(2):026105.

PMID: 37229215 PMC: 10205143. DOI: 10.1063/5.0145446.


Effectiveness and safety of a model predictive control (MPC) algorithm for an artificial pancreas system in outpatients with type 1 diabetes (T1D): systematic review and meta-analysis.

Kang S, Hwang Y, Kwon J, Kim S Diabetol Metab Syndr. 2022; 14(1):187.

PMID: 36494830 PMC: 9733359. DOI: 10.1186/s13098-022-00962-2.


Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials.

Cobelli C, Dalla Man C J Diabetes Sci Technol. 2021; 16(5):1270-1298.

PMID: 34032128 PMC: 9445339. DOI: 10.1177/19322968211015268.


: Year 2020 in review.

Mitragotri S Bioeng Transl Med. 2020; 5(3):e10178.

PMID: 33005741 PMC: 7510453. DOI: 10.1002/btm2.10178.


Controlling the AP Controller: Controller Performance Assessment and Modification.

Hajizadeh I, Hobbs N, Samadi S, Sevil M, Rashid M, Brandt R J Diabetes Sci Technol. 2019; 13(6):1091-1104.

PMID: 31561714 PMC: 6835190. DOI: 10.1177/1932296819877217.


References
1.
Toffanin C, Visentin R, Messori M, Di Palma F, Magni L, Cobelli C . Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results. IEEE Trans Biomed Eng. 2017; 65(3):479-488. DOI: 10.1109/TBME.2017.2652062. View

2.
Wang Y, Zhang J, Zeng F, Wang N, Chen X, Zhang B . "Learning" Can Improve the Blood Glucose Control Performance for Type 1 Diabetes Mellitus. Diabetes Technol Ther. 2017; 19(1):41-48. DOI: 10.1089/dia.2016.0328. View

3.
Gondhalekar R, Dassau E, Doyle 3rd F . Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica (Oxf). 2016; 71:237-246. PMC: 5040369. DOI: 10.1016/j.automatica.2016.04.015. View

4.
Wang Y, Dassau E, Doyle 3rd F . Closed-loop control of artificial pancreatic Beta -cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE Trans Biomed Eng. 2009; 57(2):211-9. DOI: 10.1109/TBME.2009.2024409. View

5.
Kovatchev B, Cheng P, Anderson S, Pinsker J, Boscari F, Buckingham B . Feasibility of Long-Term Closed-Loop Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin Delivery. Diabetes Technol Ther. 2016; 19(1):18-24. DOI: 10.1089/dia.2016.0333. View