» Articles » PMID: 30677501

HMRI - A Toolbox for Quantitative MRI in Neuroscience and Clinical Research

Abstract

Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates R and R, proton density PD and magnetisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.

Citing Articles

Thermosensory predictive coding underpins an illusion of pain.

Ehmsen J, Nikolova N, Christensen D, Banellis L, Bohme R, Braendholt M Sci Adv. 2025; 11(11):eadq0261.

PMID: 40073134 PMC: 11900864. DOI: 10.1126/sciadv.adq0261.


Longitudinal Changes of Quantitative Brain Tissue Properties Induced by Balance Training.

Aye N, Lehmann N, Kaufmann J, Heinze H, Duzel E, Ziegler G Hum Brain Mapp. 2025; 46(4):e70128.

PMID: 40017039 PMC: 11868441. DOI: 10.1002/hbm.70128.


A quantitative multi-parameter mapping protocol standardized for clinical research in multiple sclerosis.

Trang H, Hartung T, Chen Q, Hetzer S, Chien C, Sperber P Sci Rep. 2024; 14(1):30481.

PMID: 39681586 PMC: 11649941. DOI: 10.1038/s41598-024-80274-9.


EBNA-1 and VCA-p18 immunoglobulin markers link Epstein-Barr virus immune response and brain's myelin content to fatigue in a community-dwelling cohort.

Gayer M, Xu Z, Hodel F, Preisig M, Strippoli M, Vollenweider P Brain Behav Immun Health. 2024; 42:100896.

PMID: 39624483 PMC: 11609321. DOI: 10.1016/j.bbih.2024.100896.


Parallel transmit hybrid pulse design for controlled on-resonance magnetization transfer in R mapping at 7T.

Leitao D, Tomi-Tricot R, Bridgen P, Di Cio P, Liebig P, Gumbrecht R Magn Reson Med. 2024; 93(3):1090-1103.

PMID: 39402761 PMC: 11680742. DOI: 10.1002/mrm.30333.


References
1.
Fischl B, Sereno M, Tootell R, Dale A . High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp. 2000; 8(4):272-84. PMC: 6873338. DOI: 10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4. View

2.
Acosta-Cabronero J, Milovic C, Mattern H, Tejos C, Speck O, Callaghan M . A robust multi-scale approach to quantitative susceptibility mapping. Neuroimage. 2018; 183:7-24. PMC: 6215336. DOI: 10.1016/j.neuroimage.2018.07.065. View

3.
Lutti A, Hutton C, Finsterbusch J, Helms G, Weiskopf N . Optimization and validation of methods for mapping of the radiofrequency transmit field at 3T. Magn Reson Med. 2010; 64(1):229-38. PMC: 3077518. DOI: 10.1002/mrm.22421. View

4.
Helms G, Dathe H, Weiskopf N, Dechent P . Identification of signal bias in the variable flip angle method by linear display of the algebraic Ernst equation. Magn Reson Med. 2011; 66(3):669-77. PMC: 3193384. DOI: 10.1002/mrm.22849. View

5.
Carey D, Krishnan S, Callaghan M, Sereno M, Dick F . Functional and Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal Vocal Tract. Cereb Cortex. 2017; 27(1):265-278. PMC: 5808730. DOI: 10.1093/cercor/bhw393. View