» Articles » PMID: 30670702

Engineering of CRISPR-Cas12b for Human Genome Editing

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jan 24
PMID 30670702
Citations 147
Authors
Affiliations
Soon will be listed here.
Abstract

The type-V CRISPR effector Cas12b (formerly known as C2c1) has been challenging to develop for genome editing in human cells, at least in part due to the high temperature requirement of the characterized family members. Here we explore the diversity of the Cas12b family and identify a promising candidate for human gene editing from Bacillus hisashii, BhCas12b. However, at 37 °C, wild-type BhCas12b preferentially nicks the non-target DNA strand instead of forming a double strand break, leading to lower editing efficiency. Using a combination of approaches, we identify gain-of-function mutations for BhCas12b that overcome this limitation. Mutant BhCas12b facilitates robust genome editing in human cell lines and ex vivo in primary human T cells, and exhibits greater specificity compared to S. pyogenes Cas9. This work establishes a third RNA-guided nuclease platform, in addition to Cas9 and Cpf1/Cas12a, for genome editing in human cells.

Citing Articles

CRISPR-Cas applications in agriculture and plant research.

Tuncel A, Pan C, Clem J, Liu D, Qi Y Nat Rev Mol Cell Biol. 2025; .

PMID: 40055491 DOI: 10.1038/s41580-025-00834-3.


Exploiting the Specificity of CRISPR/Cas System for Nucleic Acids Amplification-Free Disease Diagnostics in the Point-of-Care.

Yee B, Ali N, Mohd-Naim N, Ahmed M Chem Bio Eng. 2025; 1(4):330-339.

PMID: 39974464 PMC: 11835143. DOI: 10.1021/cbe.3c00112.


Molecular insights and rational engineering of a compact CRISPR-Cas effector Cas12h1 with a broad-spectrum PAM.

Zheng W, Li H, Liu M, Wei Y, Liu B, Li Z Signal Transduct Target Ther. 2025; 10(1):66.

PMID: 39955288 PMC: 11830025. DOI: 10.1038/s41392-025-02147-5.


Nano-Polymers as Cas9 Inhibitors.

Chepurna O, Chatterjee A, Li Y, Ding H, Murali R, Black K Polymers (Basel). 2025; 17(3).

PMID: 39940619 PMC: 11820846. DOI: 10.3390/polym17030417.


Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data.

Nayfach S, Bhatnagar A, Novichkov A, Estevam G, Kim N, Hill E bioRxiv. 2025; .

PMID: 39829748 PMC: 11741284. DOI: 10.1101/2025.01.06.631536.


References
1.
Wu D, Guan X, Zhu Y, Ren K, Huang Z . Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Cell Res. 2017; 27(5):705-708. PMC: 5520857. DOI: 10.1038/cr.2017.46. View

2.
Yang H, Gao P, Rajashankar K, Patel D . PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease. Cell. 2016; 167(7):1814-1828.e12. PMC: 5278635. DOI: 10.1016/j.cell.2016.11.053. View

3.
Schmid-Burgk J, Schmidt T, Gaidt M, Pelka K, Latz E, Ebert T . OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines. Genome Res. 2014; 24(10):1719-23. PMC: 4199374. DOI: 10.1101/gr.176701.114. View

4.
Zetsche B, Gootenberg J, Abudayyeh O, Slaymaker I, Makarova K, Essletzbichler P . Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015; 163(3):759-71. PMC: 4638220. DOI: 10.1016/j.cell.2015.09.038. View

5.
Hsu P, Scott D, Weinstein J, Ran F, Konermann S, Agarwala V . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013; 31(9):827-32. PMC: 3969858. DOI: 10.1038/nbt.2647. View