» Articles » PMID: 27984729

PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2016 Dec 17
PMID 27984729
Citations 124
Authors
Affiliations
Soon will be listed here.
Abstract

C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a "locked" conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.

Citing Articles

Molecular insights and rational engineering of a compact CRISPR-Cas effector Cas12h1 with a broad-spectrum PAM.

Zheng W, Li H, Liu M, Wei Y, Liu B, Li Z Signal Transduct Target Ther. 2025; 10(1):66.

PMID: 39955288 PMC: 11830025. DOI: 10.1038/s41392-025-02147-5.


Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage.

Li D, Zhang S, Lin S, Xing W, Yang Y, Zhu F Nat Commun. 2024; 15(1):10727.

PMID: 39737904 PMC: 11685505. DOI: 10.1038/s41467-024-54491-9.


DNA target binding-induced pre-crRNA processing in type II and V CRISPR-Cas systems.

Chen J, Lin X, Xiang W, Chen Y, Zhao Y, Huang L Nucleic Acids Res. 2024; 53(3).

PMID: 39676682 PMC: 11797020. DOI: 10.1093/nar/gkae1241.


CRISPR-based gene editing technology and its application in microbial engineering.

Wei J, Li Y Eng Microbiol. 2024; 3(4):100101.

PMID: 39628916 PMC: 11610974. DOI: 10.1016/j.engmic.2023.100101.


Structure and genome editing activity of the novel CRISPR-Cas12o1 effector.

Duan Z, Zhang X, Zhang J, Ji X, Liu R, Chen Y Cell Res. 2024; 35(2):145-148.

PMID: 39516663 PMC: 11770080. DOI: 10.1038/s41422-024-01050-y.


References
1.
Nakanishi K, Weinberg D, Bartel D, Patel D . Structure of yeast Argonaute with guide RNA. Nature. 2012; 486(7403):368-74. PMC: 3853139. DOI: 10.1038/nature11211. View

2.
Deveau H, Barrangou R, Garneau J, Labonte J, Fremaux C, Boyaval P . Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2007; 190(4):1390-400. PMC: 2238228. DOI: 10.1128/JB.01412-07. View

3.
van der Oost J, Jore M, Westra E, Lundgren M, Brouns S . CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci. 2009; 34(8):401-7. DOI: 10.1016/j.tibs.2009.05.002. View

4.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View

5.
Shmakov S, Abudayyeh O, Makarova K, Wolf Y, Gootenberg J, Semenova E . Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell. 2015; 60(3):385-97. PMC: 4660269. DOI: 10.1016/j.molcel.2015.10.008. View