» Articles » PMID: 30656244

Response of Monoflagellate Pullers to a Shearing Flow: A Simulation Study of Microswimmer Guidance

Overview
Journal Phys Rev E
Specialty Biophysics
Date 2019 Jan 19
PMID 30656244
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Microscale swimming may be intuited to be dominated by background flows, sweeping away any untethered bodies with the prevalent flow direction. However, it has been observed that many microswimmers utilize ambient flows as guidance cues, in some cases resulting in net motion upstream, contrary to the dominant background fluid direction and our accompanying intuition. Thus the hydrodynamic response of small-scale motile organisms requires careful analysis of the complex interaction between swimmer and environment. Here we investigate the effects of a Newtonian shear flow on monoflagellated swimmers with specified body symmetry, representing, for instance, the promastigote, a parasitic hydrodynamic puller that inhabits the microenvironment of a sandfly vector midgut and is the cause of a major and neglected human tropical disease. We observe that a lack of symmetry-breaking cellular geometry results in the periodic tumbling of swimmers in the bulk, with the rotations exhibiting a linear response to changes in shearing rate enabling analytic approximation. In order to draw comparisons with the better-studied pushers, we additionally consider virtual promastigotes in a confined but typical geometry, that of a no-slip planar solid boundary, and note that in general stable guided taxis is not exhibited amongst the range of observed behaviors. However, a repulsive boundary gives rise to significant continued taxis in the presence of shearing flow, a phenomenon that may be of particular pertinence to the infective lifecycle stage of such swimmers subject to the assumption of a Newtonian medium. We finally propose a viable and general method of controlling microswimmer boundary accumulation using temporally evolving background shear flows, based on the analysis of phase-averaged dynamics and verified .

Citing Articles

Driving a Microswimmer with Wall-Induced Flow.

Moreau C, Ishimoto K Micromachines (Basel). 2021; 12(9).

PMID: 34577669 PMC: 8471039. DOI: 10.3390/mi12091025.


Control and controllability of microswimmers by a shearing flow.

Moreau C, Ishimoto K, Gaffney E, Walker B R Soc Open Sci. 2021; 8(8):211141.

PMID: 34430052 PMC: 8355676. DOI: 10.1098/rsos.211141.


High-speed multifocal plane fluorescence microscopy for three-dimensional visualisation of beating flagella.

Walker B, Wheeler R J Cell Sci. 2019; 132(16).

PMID: 31371486 PMC: 6737910. DOI: 10.1242/jcs.231795.


Response of monoflagellate pullers to a shearing flow: A simulation study of microswimmer guidance.

Walker B, Ishimoto K, Wheeler R, Gaffney E Phys Rev E. 2019; 98(6):063111.

PMID: 30656244 PMC: 6333290.

References
1.
Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, Bastin P . Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci. 2006; 119(Pt 16):3443-55. DOI: 10.1242/jcs.03078. View

2.
Goldstein S, HOLWILL M, SILVESTER N . The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti. J Exp Biol. 1970; 53(2):401-9. DOI: 10.1242/jeb.53.2.401. View

3.
Gadelha C, Wickstead B, Gull K . Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton. 2007; 64(8):629-43. DOI: 10.1002/cm.20210. View

4.
Miki K, Clapham D . Rheotaxis guides mammalian sperm. Curr Biol. 2013; 23(6):443-52. PMC: 3607503. DOI: 10.1016/j.cub.2013.02.007. View

5.
Tung C, Ardon F, Roy A, Koch D, Suarez S, Wu M . Emergence of upstream swimming via a hydrodynamic transition. Phys Rev Lett. 2015; 114(10):108102. PMC: 4505919. DOI: 10.1103/PhysRevLett.114.108102. View