» Articles » PMID: 30589983

Phosphorylation Status at Smad3 Linker Region Modulates Transforming Growth Factor-β-induced Epithelial-mesenchymal Transition and Cancer Progression

Overview
Journal Cancer Sci
Specialty Oncology
Date 2018 Dec 28
PMID 30589983
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Smad3, a major transcription factor in transforming growth factor-β (TGF-β) signaling, plays critical roles in both tumor-suppressive and pro-oncogenic functions. Upon TGF-β stimulation, the C-terminal tail of Smad3 undergoes phosphorylation that is essential for canonical TGF-β signaling. The Smad3 linker region contains serine/threonine phosphorylation sites and can be phosphorylated by intracellular kinases, such as the MAPK family, cyclin-dependent kinase (CDK) family and glycogen synthase kinase-3β (GSK-3β). Previous reports based on cell culture studies by us and others showed that mutation of Smad3 linker phosphorylation sites dramatically intensifies TGF-β responses as well as growth-inhibitory function and epithelial-mesenchymal transition (EMT), suggesting that Smad3 linker phosphorylation suppresses TGF-β transcriptional activities. However, recent discoveries of Smad3-interacting molecules that preferentially bind phosphorylated Smad3 linker serine/threonine residues have shown a multitude of signal transductions that either enhance or suppress TGF-β responses associated with Smad3 turnover or cancer progression. This review aims at providing new insight into the perplexing mechanisms of TGF-β signaling affected by Smad3 linker phosphorylation and further attempts to gain insight into elimination and protection of TGF-β-mediated oncogenic and growth-suppressive signals, respectively.

Citing Articles

A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy.

Tang M, Rong D, Gao X, Lu G, Tang H, Wang P Cell Discov. 2025; 11(1):22.

PMID: 40064862 PMC: 11894195. DOI: 10.1038/s41421-025-00774-4.


Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia.

Seymour L, Nuru N, Johnson K, Gutierrez J, Njoku V, Darie C Molecules. 2025; 30(3).

PMID: 39942749 PMC: 11820228. DOI: 10.3390/molecules30030645.


Identification of a Potent CDK8 Inhibitor Using Structure-Based Virtual Screening.

Lin T, Chou C, Wu Y, Sung T, Hsu J, Yen S J Chem Inf Model. 2024; 65(1):378-389.

PMID: 39740163 PMC: 11733953. DOI: 10.1021/acs.jcim.4c02011.


Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis.

Hu M, Guan X, Wang L, Xu H, Ke S, Yuan Q Cell Mol Life Sci. 2024; 82(1):30.

PMID: 39725783 PMC: 11671674. DOI: 10.1007/s00018-024-05548-x.


NSUN5 Facilitates Hepatocellular Carcinoma Progression by Increasing SMAD3 Expression.

Han H, Zhang C, Shi W, Wang J, Zhao W, Du Y Adv Sci (Weinh). 2024; 12(2):e2404083.

PMID: 39531371 PMC: 11727281. DOI: 10.1002/advs.202404083.


References
1.
Kretzschmar M, Doody J, Timokhina I, Massague J . A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev. 1999; 13(7):804-16. PMC: 316599. DOI: 10.1101/gad.13.7.804. View

2.
Park S, Yang K, Park Y, Hong E, Hong C, Park J . Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation. J Cancer Prev. 2018; 23(1):1-9. PMC: 5886489. DOI: 10.15430/JCP.2018.23.1.1. View

3.
Wrighton K, Lin X, Feng X . Phospho-control of TGF-beta superfamily signaling. Cell Res. 2008; 19(1):8-20. PMC: 2929013. DOI: 10.1038/cr.2008.327. View

4.
Saika S, Kono-Saika S, Ohnishi Y, Sato M, Muragaki Y, Ooshima A . Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am J Pathol. 2004; 164(2):651-63. PMC: 1602265. DOI: 10.1016/S0002-9440(10)63153-7. View

5.
Gao S, Alarcon C, Sapkota G, Rahman S, Chen P, Goerner N . Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell. 2009; 36(3):457-68. PMC: 2796330. DOI: 10.1016/j.molcel.2009.09.043. View