» Articles » PMID: 28761103

Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil

Overview
Journal Sci Rep
Specialty Science
Date 2017 Aug 2
PMID 28761103
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Superparamagnetic iron-oxide nanoparticles can be used in medical applications like vascular or targeted imaging. Magnetic particle imaging (MPI) is a promising tomographic imaging technique that allows visualizing the 3D nanoparticle distribution concentration in a non-invasive manner. The two main strengths of MPI are high temporal resolution and high sensitivity. While the first has been proven in the assessment of dynamic processes like cardiac imaging, it is unknown how far the detection limit of MPI can be lowered. Within this work, we will present a highly sensitive gradiometric receive-coil unit combined with a noise-matching network tailored for the imaging of mice. The setup is capable of detecting 5 ng of iron in-vitro with an acquisition time of 2.14 sec. In terms of iron concentration we are able to detect 156 μg/L marking the lowest value that has been reported for an MPI scanner so far. In-vivo MPI mouse images of a 512 ng bolus and a 21.5 ms acquisition time allow for capturing the flow of an intravenously injected tracer through the heart of a mouse. Since it has been rather difficult to compare detection limits across MPI publications we propose guidelines to improve the comparability of future MPI studies.

Citing Articles

Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Velazquez-Albino A, Imhoff E, Rinaldi-Ramos C Sci Adv. 2025; 11(2):eado7356.

PMID: 39772674 PMC: 11708890. DOI: 10.1126/sciadv.ado7356.


Design, construction and validation of a magnetic particle imaging (MPI) system for human brain imaging.

Mattingly E, Sliwiak M, Mason E, Chacon-Caldera J, Barksdale A, Niebel F Phys Med Biol. 2024; 70(1).

PMID: 39662051 PMC: 11702290. DOI: 10.1088/1361-6560/ad9db0.


Roadmap on magnetic nanoparticles in nanomedicine.

Wu K, Wang J, Natekar N, Ciannella S, Gonzalez-Fernandez C, Gomez-Pastora J Nanotechnology. 2024; 36(4).

PMID: 39395441 PMC: 11539342. DOI: 10.1088/1361-6528/ad8626.


Open-source device for high sensitivity magnetic particle spectroscopy, relaxometry, and hysteresis loop tracing.

Mattingly E, Barksdale A, Sliwiak M, Chacon-Caldera J, Mason E, Wald L Rev Sci Instrum. 2024; 95(6).

PMID: 38921057 PMC: 11210977. DOI: 10.1063/5.0191946.


Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging.

Behrends A, Wei H, Neumann A, Friedrich T, Bakenecker A, Franke J Nanotheranostics. 2024; 8(2):163-178.

PMID: 38444740 PMC: 10911971. DOI: 10.7150/ntno.90360.


References
1.
Rogge H, Erbe M, Buzug T, Ludtke-Buzug K . Simulation of the magnetization dynamics of diluted ferrofluids in medical applications. Biomed Tech (Berl). 2013; 58(6):601-9. DOI: 10.1515/bmt-2013-0034. View

2.
Saritas E, Goodwill P, Zhang G, Conolly S . Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging. 2013; 32(9):1600-10. DOI: 10.1109/TMI.2013.2260764. View

3.
Graeser M, von Gladiss A, Weber M, M Buzug T . Two dimensional magnetic particle spectrometry. Phys Med Biol. 2017; 62(9):3378-3391. DOI: 10.1088/1361-6560/aa5bcd. View

4.
Saritas E, Goodwill P, Conolly S . Effects of pulse duration on magnetostimulation thresholds. Med Phys. 2015; 42(6):3005-12. PMC: 4441713. DOI: 10.1118/1.4921209. View

5.
Weizenecker J, Gleich B, Rahmer J, Borgert J . Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles. Phys Med Biol. 2012; 57(22):7317-27. DOI: 10.1088/0031-9155/57/22/7317. View