» Articles » PMID: 30524224

Thalamocortical Communication in the Awake Mouse Visual System Involves Phase Synchronization and Rhythmic Spike Synchrony at High Gamma Frequencies

Overview
Journal Front Neurosci
Date 2018 Dec 8
PMID 30524224
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

In the neocortex, communication between neurons is heavily influenced by the activity of the surrounding network, with communication efficacy increasing when population patterns are oscillatory and coherent. Less is known about whether coherent oscillations are essential for conveyance of thalamic input to the neocortex in awake animals. Here we investigated whether visual-evoked oscillations and spikes in the primary visual cortex (V1) were aligned with those in the visual thalamus (dLGN). Using simultaneous recordings of visual-evoked activity in V1 and dLGN we demonstrate that thalamocortical communication involves synchronized local field potential oscillations in the high gamma range (50-90 Hz) which correspond uniquely to precise dLGN-V1 spike synchrony. These results provide evidence of a role for high gamma oscillations in mediating thalamocortical communication in the visual pathway of mice, analogous to beta oscillations in primates.

Citing Articles

Origin of visual experience-dependent theta oscillations.

Zimmerman M, Kissinger S, Edens P, Towers R, Nareddula S, Nadew Y Curr Biol. 2024; 35(1):87-99.e6.

PMID: 39657670 PMC: 11720618. DOI: 10.1016/j.cub.2024.11.015.


Respiration organizes gamma synchrony in the prefronto-thalamic network.

Basha D, Chauvette S, Sheroziya M, Timofeev I Sci Rep. 2023; 13(1):8529.

PMID: 37237017 PMC: 10219931. DOI: 10.1038/s41598-023-35516-7.


Cerebellar control of thalamocortical circuits for cognitive function: A review of pathways and a proposed mechanism.

Heck D, Fox M, Correia Chapman B, McAfee S, Liu Y Front Syst Neurosci. 2023; 17:1126508.

PMID: 37064161 PMC: 10097962. DOI: 10.3389/fnsys.2023.1126508.


Altered low-frequency brain rhythms precede changes in gamma power during tauopathy.

Rodrigues F, Papanikolaou A, Holeniewska J, Phillips K, Saleem A, Solomon S iScience. 2022; 25(10):105232.

PMID: 36274955 PMC: 9579020. DOI: 10.1016/j.isci.2022.105232.


Causal Evidence for a Role of Cerebellar Lobulus Simplex in Prefrontal-Hippocampal Interaction in Spatial Working Memory Decision-Making.

Liu Y, McAfee S, van der Heijden M, Dhamala M, Sillitoe R, Heck D Cerebellum. 2022; 21(5):762-775.

PMID: 35218525 PMC: 10230449. DOI: 10.1007/s12311-022-01383-7.


References
1.
Castelo-Branco M, Neuenschwander S, Singer W . Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci. 1998; 18(16):6395-410. PMC: 6793201. View

2.
Sherman S, Guillery R . The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2003; 357(1428):1695-708. PMC: 1693087. DOI: 10.1098/rstb.2002.1161. View

3.
Jones E . Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci. 2003; 357(1428):1659-73. PMC: 1693077. DOI: 10.1098/rstb.2002.1168. View

4.
Bastos A, Vezoli J, Fries P . Communication through coherence with inter-areal delays. Curr Opin Neurobiol. 2014; 31:173-80. DOI: 10.1016/j.conb.2014.11.001. View

5.
Bastos A, Briggs F, Alitto H, Mangun G, Usrey W . Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations. J Neurosci. 2014; 34(22):7639-44. PMC: 4035524. DOI: 10.1523/JNEUROSCI.4216-13.2014. View