» Articles » PMID: 24872567

Simultaneous Recordings from the Primary Visual Cortex and Lateral Geniculate Nucleus Reveal Rhythmic Interactions and a Cortical Source for γ-band Oscillations

Overview
Journal J Neurosci
Specialty Neurology
Date 2014 May 30
PMID 24872567
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex.

Citing Articles

Origin of visual experience-dependent theta oscillations.

Zimmerman M, Kissinger S, Edens P, Towers R, Nareddula S, Nadew Y Curr Biol. 2024; 35(1):87-99.e6.

PMID: 39657670 PMC: 11720618. DOI: 10.1016/j.cub.2024.11.015.


The gamma rhythm as a guardian of brain health.

Ichim A, Barzan H, Moca V, Nagy-Dabacan A, Ciuparu A, Hapca A Elife. 2024; 13.

PMID: 39565646 PMC: 11578591. DOI: 10.7554/eLife.100238.


Thalamocortical interactions shape hierarchical neural variability during stimulus perception.

Tauste Campo A, Zainos A, Vazquez Y, Adell Segarra R, Alvarez M, Deco G iScience. 2024; 27(7):110065.

PMID: 38993679 PMC: 11237863. DOI: 10.1016/j.isci.2024.110065.


Mechanism of an Intrinsic Oscillation in Rat Geniculate Interneurons.

Griffith E, Elsayed M, Dura-Bernal S, Neymotin S, Uhlrich D, Lytton W bioRxiv. 2024; .

PMID: 38895250 PMC: 11185623. DOI: 10.1101/2024.06.06.597830.


Optogenetic activation of visual thalamus generates artificial visual percepts.

Wang J, Azimi H, Zhao Y, Kaeser M, Sanchez P, Vazquez-Guardado A Elife. 2023; 12.

PMID: 37791662 PMC: 10593406. DOI: 10.7554/eLife.90431.


References
1.
Maier A, Adams G, Aura C, Leopold D . Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci. 2010; 4. PMC: 2928665. DOI: 10.3389/fnsys.2010.00031. View

2.
Castelo-Branco M, Neuenschwander S, Singer W . Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci. 1998; 18(16):6395-410. PMC: 6793201. View

3.
Neuenschwander S, Singer W . Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature. 1996; 379(6567):728-32. DOI: 10.1038/379728a0. View

4.
Vinck M, van Wingerden M, Womelsdorf T, Fries P, Pennartz C . The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization. Neuroimage. 2010; 51(1):112-22. DOI: 10.1016/j.neuroimage.2010.01.073. View

5.
Alonso J, Martinez L . Functional connectivity between simple cells and complex cells in cat striate cortex. Nat Neurosci. 1999; 1(5):395-403. DOI: 10.1038/1609. View