» Articles » PMID: 30498876

Improvement of Image Quality at CT and MRI Using Deep Learning

Overview
Journal Jpn J Radiol
Publisher Springer
Specialty Radiology
Date 2018 Dec 1
PMID 30498876
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

Deep learning has been developed by computer scientists. Here, we discuss techniques for improving the image quality of diagnostic computed tomography and magnetic resonance imaging with the aid of deep learning. We categorize the techniques for improving the image quality as "noise and artifact reduction", "super resolution" and "image acquisition and reconstruction". For each category, we present and outline the features of some studies.

Citing Articles

CZT-based photon-counting-detector CT with deep-learning reconstruction: image quality and diagnostic confidence for lung tumor assessment.

Sasaki T, Kuno H, Nomura K, Muramatsu Y, Aokage K, Samejima J Jpn J Radiol. 2025; .

PMID: 40053285 DOI: 10.1007/s11604-025-01759-9.


Artificial Intelligence and Predictive Modeling in the Management and Treatment of Episodic Migraine.

Natekar A, Cohen F Curr Pain Headache Rep. 2025; 29(1):56.

PMID: 40009302 DOI: 10.1007/s11916-025-01364-5.


Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning: A Prospective Study.

Wilpert C, Schneider H, Rau A, Russe M, Oerther B, Strecker R Korean J Radiol. 2025; 26(1):29-42.

PMID: 39780629 PMC: 11717867. DOI: 10.3348/kjr.2023.1303.


Artificial Intelligence in Audiology: A Scoping Review of Current Applications and Future Directions.

Frosolini A, Franz L, Caragli V, Genovese E, de Filippis C, Marioni G Sensors (Basel). 2024; 24(22).

PMID: 39598904 PMC: 11598364. DOI: 10.3390/s24227126.


The Role of Artificial Intelligence in Diagnostic Radiology.

Strubchevska O, Kozyk M, Kozyk A, Strubchevska K Cureus. 2024; 16(10):e72173.

PMID: 39583413 PMC: 11582495. DOI: 10.7759/cureus.72173.


References
1.
Dong C, Loy C, He K, Tang X . Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans Pattern Anal Mach Intell. 2016; 38(2):295-307. DOI: 10.1109/TPAMI.2015.2439281. View

2.
Golkov V, Dosovitskiy A, Sperl J, Menzel M, Czisch M, Samann P . q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans. IEEE Trans Med Imaging. 2016; 35(5):1344-1351. DOI: 10.1109/TMI.2016.2551324. View

3.
Touch M, Clark D, Barber W, Badea C . A neural network-based method for spectral distortion correction in photon counting x-ray CT. Phys Med Biol. 2016; 61(16):6132-53. PMC: 5056429. DOI: 10.1088/0031-9155/61/16/6132. View

4.
Kim K, Park S . Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI. Magn Reson Imaging. 2016; 37:139-146. DOI: 10.1016/j.mri.2016.11.020. View

5.
Zhang K, Zuo W, Chen Y, Meng D, Zhang L . Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans Image Process. 2017; 26(7):3142-3155. DOI: 10.1109/TIP.2017.2662206. View