» Articles » PMID: 30471192

Computational Methods and Tools to Predict Cytochrome P450 Metabolism for Drug Discovery

Overview
Date 2018 Nov 25
PMID 30471192
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

In this review, we present important, recent developments in the computational prediction of cytochrome P450 (CYP) metabolism in the context of drug discovery. We discuss in silico models for the various aspects of CYP metabolism prediction, including CYP substrate and inhibitor predictors, site of metabolism predictors (i.e., metabolically labile sites within potential substrates) and metabolite structure predictors. We summarize the different approaches taken by these models, such as rule-based methods, machine learning, data mining, quantum chemical methods, molecular interaction fields, and docking. We highlight the scope and limitations of each method and discuss future implications for the field of metabolism prediction in drug discovery.

Citing Articles

Evaluation of selected indigenous spices- and herbs-derived small molecules as potential inhibitors of SREBP and its implications for breast cancer using MD simulations and MMPBSA calculations.

Tiwari U, Akhtar S, Mir S, Khan M Mol Divers. 2025; .

PMID: 39899124 DOI: 10.1007/s11030-025-11122-9.


XenoMet: A Corpus of Texts to Extract Data on Metabolites of Xenobiotics.

Biziukova N, Rudik A, Dmitriev A, Tarasova O, Filimonov D, Poroikov V ACS Omega. 2025; 10(3):2459-2471.

PMID: 39895765 PMC: 11780559. DOI: 10.1021/acsomega.4c05723.


Harnessing the AI/ML in Drug and Biological Products Discovery and Development: The Regulatory Perspective.

Mirakhori F, Niazi S Pharmaceuticals (Basel). 2025; 18(1).

PMID: 39861110 PMC: 11769376. DOI: 10.3390/ph18010047.


Identifying therapeutic target for prostate cancer: exploring Diosmetin as a CYP inhibitor.

Molla M, Aljahdali M Discov Oncol. 2024; 15(1):814.

PMID: 39704776 PMC: 11662097. DOI: 10.1007/s12672-024-01711-9.


An Ultra-Fast Green UHPLC-MS/MS Method for Assessing the In Vitro Metabolic Stability of Dovitinib: In Silico Study for Absorption, Distribution, Metabolism, Excretion, Metabolic Lability, and DEREK Alerts.

Attwa M, Abdelhameed A, Kadi A Medicina (Kaunas). 2024; 60(10).

PMID: 39459413 PMC: 11509458. DOI: 10.3390/medicina60101626.


References
1.
Finkelmann A, Goldmann D, Schneider G, Goller A . MetScore: Site of Metabolism Prediction Beyond Cytochrome P450 Enzymes. ChemMedChem. 2018; 13(21):2281-2289. DOI: 10.1002/cmdc.201800309. View

2.
Kingsley L, Wilson G, Essex M, Lill M . Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Pharm Res. 2014; 32(3):986-1001. PMC: 4329266. DOI: 10.1007/s11095-014-1511-3. View

3.
Daina A, Michielin O, Zoete V . SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717. PMC: 5335600. DOI: 10.1038/srep42717. View

4.
Xiong Y, Qiao Y, Kihara D, Zhang H, Zhu X, Wei D . Survey of Machine Learning Techniques for Prediction of the Isoform Specificity of Cytochrome P450 Substrates. Curr Drug Metab. 2018; 20(3):229-235. DOI: 10.2174/1389200219666181019094526. View

5.
Matlock M, Hughes T, Swamidass S . XenoSite server: a web-available site of metabolism prediction tool. Bioinformatics. 2014; 31(7):1136-7. DOI: 10.1093/bioinformatics/btu761. View