» Articles » PMID: 28124606

Cytochrome P450 Structure, Function and Clinical Significance: A Review

Overview
Specialty Pharmacology
Date 2017 Jan 27
PMID 28124606
Citations 247
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins that play a pivotal role in the detoxification of xenobiotics, cellular metabolism and homeostasis. Induction or inhibition of CYP enzymes is a major mechanism that underlies drug-drug interactions. CYP enzymes can be transcriptionally activated by various xenobiotics and endogenous substrates through receptor-dependent mechanisms. CYP enzyme inhibition is a principal mechanism for metabolism- based drug-drug interactions. Many chemotherapeutic drugs can cause drug interactions due to their ability to either inhibit or induce the CYP enzyme system. Predictions based on in silico analyses followed by validation have identified several microRNAs that regulate CYPs. Genetic polymorphisms and epigenetic changes in CYP genes may be responsible for inter-individual and interethnic variations in disease susceptibility and the therapeutic efficacy of drugs.

Objective: The present review is a comprehensive compilation of cytochrome P450 structure, function, pharmacogenetics, pharmacoepigenetics and clinical significance.

Conclusion: Knowledge about the substrates, inducers, and inhibitors of CYP isoforms, as well as the polymorphisms of CYP enzymes may be used as an aid by clinicians to determine therapeutic strategy, and treatment doses for drugs that are metabolized by CYP gene products.

Citing Articles

Theoretical Study on the Metabolic Mechanism of Heptachlor in Human Cytochrome P450 Enzymes.

Zhao X, Zhang H, Shen X, Zheng Q, Wang S Int J Mol Sci. 2025; 26(5).

PMID: 40076644 PMC: 11900268. DOI: 10.3390/ijms26052021.


Genome-wide identification and expression analysis of s under various stress treatment in .

Li G, Zhang X, Li Y, Zhang X, Manzoor M, Sun C Physiol Mol Biol Plants. 2025; 31(2):311-328.

PMID: 40066459 PMC: 11890713. DOI: 10.1007/s12298-025-01555-9.


Gut microbiota-mediated bile acid transformations regulate the transport of aflatoxin B1 from the intestine to the liver in piglets.

Mao J, Wei Y, Ni Z, Zhang J, Zhu J, Wang H J Anim Sci Biotechnol. 2025; 16(1):38.

PMID: 40055782 PMC: 11889867. DOI: 10.1186/s40104-025-01169-x.


Current hPSC-derived liver organoids for toxicity testing: Cytochrome P450 enzymes and drug metabolism.

Kim H, Park H Toxicol Res. 2025; 41(2):105-121.

PMID: 40013078 PMC: 11850699. DOI: 10.1007/s43188-024-00275-8.


Characterization of Indian waxy and non-waxy maize germplasm for genetic differentiation through SNP genotyping.

Venadan S, Das A, Dixit S, Arora A, Kumar B, Hossain F Mol Genet Genomics. 2025; 300(1):27.

PMID: 40011230 DOI: 10.1007/s00438-024-02222-6.