» Articles » PMID: 30446001

Footprints of Antigen Processing Boost MHC Class II Natural Ligand Predictions

Overview
Journal Genome Med
Publisher Biomed Central
Specialty Genetics
Date 2018 Nov 18
PMID 30446001
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing.

Methods: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets.

Results: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand.

Conclusions: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens.

Citing Articles

3D genome contributes to MHC-II neoantigen prediction.

Feng M, Liu L, Su K, Su X, Meng L, Guo Z BMC Genomics. 2024; 25(Suppl 2):889.

PMID: 39327585 PMC: 11425871. DOI: 10.1186/s12864-024-10687-3.


In Silico Tools for Predicting Novel Epitopes.

Barra C, Nilsson J, Saksager A, Carri I, Deleuran S, Garcia Alvarez H Methods Mol Biol. 2024; 2813:245-280.

PMID: 38888783 DOI: 10.1007/978-1-0716-3890-3_17.


Graph-pMHC: graph neural network approach to MHC class II peptide presentation and antibody immunogenicity.

Thrift W, Perera J, Cohen S, Lounsbury N, Gurung H, Rose C Brief Bioinform. 2024; 25(3).

PMID: 38555476 PMC: 10981672. DOI: 10.1093/bib/bbae123.


Structure-aware deep model for MHC-II peptide binding affinity prediction.

Yu Y, Zu L, Jiang J, Wu Y, Wang Y, Xu M BMC Genomics. 2024; 25(1):127.

PMID: 38291350 PMC: 10826266. DOI: 10.1186/s12864-023-09900-6.


New light on the HLA-DR immunopeptidomic landscape.

Jensen E, Reynisson B, Barra C, Nielsen M J Leukoc Biol. 2024; 115(5):913-925.

PMID: 38214568 PMC: 11057780. DOI: 10.1093/jleuko/qiae007.


References
1.
Nielsen M, Lundegaard C, Lund O . Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics. 2007; 8:238. PMC: 1939856. DOI: 10.1186/1471-2105-8-238. View

2.
Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J . Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015; 520(7549):692-6. PMC: 4838069. DOI: 10.1038/nature14426. View

3.
Sidney J, Southwood S, Moore C, Oseroff C, Pinilla C, Grey H . Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture. Curr Protoc Immunol. 2013; Chapter 18:Unit 18.3.. PMC: 3626435. DOI: 10.1002/0471142735.im1803s100. View

4.
Lanzarotti E, Marcatili P, Nielsen M . Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring. Mol Immunol. 2017; 94:91-97. PMC: 5800965. DOI: 10.1016/j.molimm.2017.12.019. View

5.
Blum J, Wearsch P, Cresswell P . Pathways of antigen processing. Annu Rev Immunol. 2013; 31:443-73. PMC: 4026165. DOI: 10.1146/annurev-immunol-032712-095910. View