» Articles » PMID: 30418645

The MemProtMD Database: a Resource for Membrane-embedded Protein Structures and Their Lipid Interactions

Overview
Specialty Biochemistry
Date 2018 Nov 13
PMID 30418645
Citations 87
Authors
Affiliations
Soon will be listed here.
Abstract

Integral membrane proteins fulfil important roles in many crucial biological processes, including cell signalling, molecular transport and bioenergetic processes. Advancements in experimental techniques are revealing high resolution structures for an increasing number of membrane proteins. Yet, these structures are rarely resolved in complex with membrane lipids. In 2015, the MemProtMD pipeline was developed to allow the automated lipid bilayer assembly around new membrane protein structures, released from the Protein Data Bank (PDB). To make these data available to the scientific community, a web database (http://memprotmd.bioch.ox.ac.uk) has been developed. Simulations and the results of subsequent analysis can be viewed using a web browser, including interactive 3D visualizations of the assembled bilayer and 2D visualizations of lipid contact data and membrane protein topology. In addition, ensemble analyses are performed to detail conserved lipid interaction information across proteins, families and for the entire database of 3506 PDB entries. Proteins may be searched using keywords, PDB or Uniprot identifier, or browsed using classification systems, such as Pfam, Gene Ontology annotation, mpstruc or the Transporter Classification Database. All files required to run further molecular simulations of proteins in the database are provided.

Citing Articles

Structural basis of undecaprenyl phosphate glycosylation leading to polymyxin resistance in Gram-negative bacteria.

Ashraf K, Bunoro-Batista M, Ansell T, Punetha A, Rosario-Garrido S, Firlar E bioRxiv. 2025; .

PMID: 39974898 PMC: 11838356. DOI: 10.1101/2025.01.29.634835.


BioDolphin as a comprehensive database of lipid-protein binding interactions.

Yang L, Ping K, Luo Y, McShan A Commun Chem. 2024; 7(1):288.

PMID: 39633021 PMC: 11618342. DOI: 10.1038/s42004-024-01384-z.


Membrane lipid homeostasis dually regulates conformational transition of phosphoethanolamine transferase EptA.

Ma Z, Nang S, Liu Z, Zhu J, Mu K, Xu L Nat Commun. 2024; 15(1):10166.

PMID: 39580503 PMC: 11585620. DOI: 10.1038/s41467-024-54607-1.


Memprot.GPCR-ModSim: modelling and simulation of membrane proteins in a nutshell.

van den Broek R, Bello X, Kupper R, van Westen G, Jespers W, Gutierrez-de-Teran H Bioinformatics. 2024; 40(11).

PMID: 39504465 PMC: 11578594. DOI: 10.1093/bioinformatics/btae662.


Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters.

Karagol A, Karagol T, Zhang S Pharm Res. 2024; 41(10):1965-1977.

PMID: 39322794 PMC: 11530497. DOI: 10.1007/s11095-024-03769-0.


References
1.
Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H . The Protein Data Bank. Nucleic Acids Res. 1999; 28(1):235-42. PMC: 102472. DOI: 10.1093/nar/28.1.235. View

2.
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J . Structural determinants of water permeation through aquaporin-1. Nature. 2000; 407(6804):599-605. DOI: 10.1038/35036519. View

3.
Abramson J, Smirnova I, Kasho V, Verner G, Kaback H, Iwata S . Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003; 301(5633):610-5. DOI: 10.1126/science.1088196. View

4.
Weiss M, Schulz G . Structure of porin refined at 1.8 A resolution. J Mol Biol. 1992; 227(2):493-509. DOI: 10.1016/0022-2836(92)90903-w. View

5.
van den Berg B, Clemons Jr W, Collinson I, Modis Y, Hartmann E, Harrison S . X-ray structure of a protein-conducting channel. Nature. 2003; 427(6969):36-44. DOI: 10.1038/nature02218. View