» Articles » PMID: 17962520

High-resolution Crystal Structure of an Engineered Human Beta2-adrenergic G Protein-coupled Receptor

Overview
Journal Science
Specialty Science
Date 2007 Oct 27
PMID 17962520
Citations 1351
Authors
Affiliations
Soon will be listed here.
Abstract

Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.

Citing Articles

GPCR drug discovery: new agents, targets and indications.

Lorente J, Sokolov A, Ferguson G, Schioth H, Hauser A, Gloriam D Nat Rev Drug Discov. 2025; .

PMID: 40033110 DOI: 10.1038/s41573-025-01139-y.


Repeated-Dose Toxicity of Lauric Acid and Its Preventive Effect Against Tracheal Hyper-Responsiveness in Wistar Rats with Possible Molecular Targets.

Figueiredo I, Martins A, Cavalcanti A, Fernandes J, Gomes L, Vieira M Pharmaceuticals (Basel). 2025; 18(2).

PMID: 40006035 PMC: 11859213. DOI: 10.3390/ph18020221.


Structural basis for lipid-mediated activation of G protein-coupled receptor GPR55.

Claff T, Ebenhoch R, Kley J, Magarkar A, Nar H, Weichert D Nat Commun. 2025; 16(1):1973.

PMID: 40000629 PMC: 11861906. DOI: 10.1038/s41467-025-57204-y.


Protein palmitoylation: biological functions, disease, and therapeutic targets.

Qian Y, Zhao Y, Zhang F MedComm (2020). 2025; 6(3):e70096.

PMID: 39991624 PMC: 11843170. DOI: 10.1002/mco2.70096.


Single-Molecule Insights into GPCR Conformational Landscapes.

Lamichhane R J Membr Biol. 2025; .

PMID: 39960496 DOI: 10.1007/s00232-025-00338-3.


References
1.
Strader C, Candelore M, HILL W, Sigal I, Dixon R . Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem. 1989; 264(23):13572-8. View

2.
Javitch J . The ants go marching two by two: oligomeric structure of G-protein-coupled receptors. Mol Pharmacol. 2004; 66(5):1077-82. DOI: 10.1124/mol.104.006320. View

3.
Nollert P, Qiu H, Caffrey M, Rosenbusch J, Landau E . Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases. FEBS Lett. 2001; 504(3):179-86. DOI: 10.1016/s0014-5793(01)02747-8. View

4.
Salom D, Lodowski D, Stenkamp R, Le Trong I, Golczak M, Jastrzebska B . Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A. 2006; 103(44):16123-8. PMC: 1637547. DOI: 10.1073/pnas.0608022103. View

5.
Kobilka B . Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci. 1992; 15:87-114. DOI: 10.1146/annurev.ne.15.030192.000511. View