» Articles » PMID: 30400448

Study on the Optimum Cutting Parameters of an Aluminum Mold for Effective Bonding Strength of a PDMS Microfluidic Device

Overview
Publisher MDPI
Date 2018 Nov 8
PMID 30400448
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Master mold fabricated using micro milling is an easy way to develop the polydimethylsiloxane (PDMS) based microfluidic device. Achieving high-quality micro-milled surface is important for excellent bonding strength between PDMS and glass slide. The aim of our experiment is to study the optimal cutting parameters for micro milling an aluminum mold insert for the production of a fine resolution microstructure with the minimum surface roughness using conventional computer numerical control (CNC) machine systems; we also aim to measure the bonding strength of PDMS with different surface roughnesses. Response surface methodology was employed to optimize the cutting parameters in order to obtain high surface smoothness. The cutting parameters were demonstrated with the following combinations: 20,000 rpm spindle speed, 50 mm/min feed rate, depth of cut 5 µm with tool size 200 µm or less; this gives a fine resolution microstructure with the minimum surface roughness and strong bonding strength between PDMS⁻PDMS and PDMS⁻glass.

Citing Articles

A review on inertial microfluidic fabrication methods.

Akbari Z, Raoufi M, Mirjalali S, Aghajanloo B Biomicrofluidics. 2023; 17(5):051504.

PMID: 37869745 PMC: 10589053. DOI: 10.1063/5.0163970.


Optimization of Oligomer Stamping Technique for Normally Closed Elastomeric Valves on Glass Substrate.

Dungan J, Mathews J, Levin M, Koomson V Micromachines (Basel). 2023; 14(9).

PMID: 37763822 PMC: 10534499. DOI: 10.3390/mi14091659.


Rapid Prototyping of Multi-Functional and Biocompatible Parafilm-Based Microfluidic Devices by Laser Ablation and Thermal Bonding.

Wei Y, Wang T, Wang Y, Zeng S, Ho Y, Ho H Micromachines (Basel). 2023; 14(3).

PMID: 36985063 PMC: 10054776. DOI: 10.3390/mi14030656.


PDMS Bonding Technologies for Microfluidic Applications: A Review.

Borok A, Laboda K, Bonyar A Biosensors (Basel). 2021; 11(8).

PMID: 34436094 PMC: 8394141. DOI: 10.3390/bios11080292.


Predictive Modelling and Multi-Objective Optimization of Surface Integrity Parameters in Sustainable Machining Processes of Magnesium Alloy.

Danish M, Rubaiee S, Ijaz H Materials (Basel). 2021; 14(13).

PMID: 34202003 PMC: 8269527. DOI: 10.3390/ma14133547.


References
1.
Greener J, Li W, Ren J, Voicu D, Pakharenko V, Tang T . Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing. Lab Chip. 2010; 10(4):522-4. DOI: 10.1039/b918834g. View

2.
Esch M, Kapur S, Irizarry G, Genova V . Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab Chip. 2004; 3(2):121-7. DOI: 10.1039/b300730h. View

3.
Lin Y, Yang C, Wang C, Chang F, Huang K, Hsieh W . An aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly(DL-lactide-co-glycolide) microparticle generation. Sensors (Basel). 2012; 12(2):1455-67. PMC: 3304121. DOI: 10.3390/s120201455. View

4.
Kersey L, Ebacher V, Bazargan V, Wang R, Stoeber B . The effect of adhesion promoter on the adhesion of PDMS to different substrate materials. Lab Chip. 2009; 9(7):1002-4. DOI: 10.1039/b813757a. View

5.
McDonald J, Duffy D, ANDERSON J, Chiu D, Wu H, Schueller O . Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 2000; 21(1):27-40. DOI: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C. View