» Articles » PMID: 30307984

Precision in a Rush: Trade-offs Between Reproducibility and Steepness of the Hunchback Expression Pattern

Overview
Specialty Biology
Date 2018 Oct 12
PMID 30307984
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Fly development amazes us by the precision and reproducibility of gene expression, especially since the initial expression patterns are established during very short nuclear cycles. Recent live imaging of hunchback promoter dynamics shows a stable steep binary expression pattern established within the three minute interphase of nuclear cycle 11. Considering expression models of different complexity, we explore the trade-off between the ability of a regulatory system to produce a steep boundary and minimize expression variability between different nuclei. We show how a limited readout time imposed by short developmental cycles affects the gene's ability to read positional information along the embryo's anterior posterior axis and express reliably. Comparing our theoretical results to real-time monitoring of the hunchback transcription dynamics in live flies, we discuss possible regulatory strategies, suggesting an important role for additional binding sites, gradients or non-equilibrium binding and modified transcription factor search strategies.

Citing Articles

Bicoid-nucleosome competition sets a concentration threshold for transcription constrained by genome replication.

Degen E, Croslyn C, Mangan N, Blythe S bioRxiv. 2024; .

PMID: 39713295 PMC: 11661180. DOI: 10.1101/2024.12.10.627802.


Time will tell: comparing timescales to gain insight into transcriptional bursting.

Meeussen J, Lenstra T Trends Genet. 2024; 40(2):160-174.

PMID: 38216391 PMC: 10860890. DOI: 10.1016/j.tig.2023.11.003.


Size limits the sensitivity of kinetic schemes.

Owen J, Horowitz J Nat Commun. 2023; 14(1):1280.

PMID: 36890153 PMC: 9995461. DOI: 10.1038/s41467-023-36705-8.


Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient.

Alamos S, Reimer A, Westrum C, Turner M, Talledo P, Zhao J Cell Syst. 2023; 14(3):220-236.e3.

PMID: 36696901 PMC: 10125799. DOI: 10.1016/j.cels.2022.12.008.


Eukaryotic gene regulation at equilibrium, or non?.

Zoller B, Gregor T, Tkacik G Curr Opin Syst Biol. 2023; 31.

PMID: 36590072 PMC: 9802646. DOI: 10.1016/j.coisb.2022.100435.


References
1.
Skoge M, Meir Y, Wingreen N . Dynamics of cooperativity in chemical sensing among cell-surface receptors. Phys Rev Lett. 2011; 107(17):178101. DOI: 10.1103/PhysRevLett.107.178101. View

2.
Berg H, PURCELL E . Physics of chemoreception. Biophys J. 1977; 20(2):193-219. PMC: 1473391. DOI: 10.1016/S0006-3495(77)85544-6. View

3.
Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, Oberstein A . The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. Proc Natl Acad Sci U S A. 2005; 102(14):4960-5. PMC: 555997. DOI: 10.1073/pnas.0500373102. View

4.
Lohr U, Chung H, Beller M, Jackle H . Bicoid--morphogen function revisited. Fly (Austin). 2010; 4(3):236-40. PMC: 3322503. DOI: 10.4161/fly.4.3.11862. View

5.
Jaeger J . The gap gene network. Cell Mol Life Sci. 2010; 68(2):243-74. PMC: 3016493. DOI: 10.1007/s00018-010-0536-y. View