» Articles » PMID: 30271927

Structural Insights from Lipid-bilayer Nanodiscs Link α-Synuclein Membrane-binding Modes to Amyloid Fibril Formation

Overview
Journal Commun Biol
Specialty Biology
Date 2018 Oct 2
PMID 30271927
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

The protein α-Synuclein (αS) is linked to Parkinson's disease through its abnormal aggregation, which is thought to involve cytosolic and membrane-bound forms of αS. Following previous studies using micelles and vesicles, we present a comprehensive study of αS interaction with phospholipid bilayer nanodiscs. Using a combination of NMR-spectroscopic, biophysical, and computational methods, we structurally and kinetically characterize αS interaction with different membrane discs in a quantitative and site-resolved way. We obtain global and residue-specific αS membrane affinities, and determine modulations of αS membrane binding due to αS acetylation, membrane plasticity, lipid charge density, and accessible membrane surface area, as well as the consequences of the different binding modes for αS amyloid fibril formation. Our results establish a structural and kinetic link between the observed dissimilar binding modes and either aggregation-inhibiting properties, largely unperturbed aggregation, or accelerated aggregation due to membrane-assisted fibril nucleation.

Citing Articles

Order-to-Disorder and Disorder-to-Order Transitions of Proteins upon Binding to Phospholipid Membranes: Common Ground and Dissimilarities.

Schweitzer-Stenner R Biomolecules. 2025; 15(2).

PMID: 40001501 PMC: 11852466. DOI: 10.3390/biom15020198.


Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation.

Choi S, Jin Y, Choi Y, Seong B Int J Mol Sci. 2025; 26(1.

PMID: 39795912 PMC: 11720324. DOI: 10.3390/ijms26010053.


Cholesterol Accelerates Aggregation of α-Synuclein Simultaneously Increasing the Toxicity of Amyloid Fibrils.

Matveyenka M, Ali A, Mitchell C, Brown H, Kurouski D ACS Chem Neurosci. 2024; 15(21):4075-4081.

PMID: 39469734 PMC: 11587506. DOI: 10.1021/acschemneuro.4c00501.


Conformational Selection of α-Synuclein Tetramers at Biological Interfaces.

Bhattacharya S, Xu L, Arrue L, Bartels T, Thompson D J Chem Inf Model. 2024; 64(20):8010-8023.

PMID: 39377660 PMC: 11523075. DOI: 10.1021/acs.jcim.4c01459.


Folding of N-terminally acetylated α-synuclein upon interaction with lipid membranes.

Tang Z, Fang Z, Wu X, Liu J, Tian L, Li X Biophys J. 2024; 123(21):3698-3720.

PMID: 39306670 PMC: 11560312. DOI: 10.1016/j.bpj.2024.09.019.


References
1.
Jambeck J, Lyubartsev A . Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B. 2012; 116(10):3164-79. PMC: 3320744. DOI: 10.1021/jp212503e. View

2.
Ulmer T, Bax A, Cole N, Nussbaum R . Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem. 2004; 280(10):9595-603. DOI: 10.1074/jbc.M411805200. View

3.
Bellani S, Sousa V, Ronzitti G, Valtorta F, Meldolesi J, Chieregatti E . The regulation of synaptic function by alpha-synuclein. Commun Integr Biol. 2010; 3(2):106-9. PMC: 2889964. DOI: 10.4161/cib.3.2.10964. View

4.
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J, Dror R . Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010; 78(8):1950-8. PMC: 2970904. DOI: 10.1002/prot.22711. View

5.
Tuttle M, Comellas G, Nieuwkoop A, Covell D, Berthold D, Kloepper K . Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol. 2016; 23(5):409-15. PMC: 5034296. DOI: 10.1038/nsmb.3194. View