» Articles » PMID: 30262649

Mechanism of TRNA-mediated +1 Ribosomal Frameshifting

Overview
Specialty Science
Date 2018 Sep 29
PMID 30262649
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate translation of the genetic code is critical to ensure expression of proteins with correct amino acid sequences. Certain tRNAs can cause a shift out of frame (i.e., frameshifting) due to imbalances in tRNA concentrations, lack of tRNA modifications or insertions or deletions in tRNAs (called frameshift suppressors). Here, we determined the structural basis for how frameshift-suppressor tRNA (a derivative of tRNA) reprograms the mRNA frame to translate a 4-nt codon when bound to the bacterial ribosome. After decoding at the aminoacyl (A) site, the crystal structure of the anticodon stem-loop of tRNA bound in the peptidyl (P) site reveals ASL conformational changes that allow for recoding into the +1 mRNA frame. Furthermore, a crystal structure of full-length tRNA programmed in the P site shows extensive conformational rearrangements of the 30S head and body domains similar to what is observed in a translocation intermediate state containing elongation factor G (EF-G). The 30S movement positions tRNA toward the 30S exit (E) site disrupting key 16S rRNA-mRNA interactions that typically define the mRNA frame. In summary, this tRNA-induced 30S domain change in the absence of EF-G causes the ribosome to lose its grip on the mRNA and uncouples the canonical forward movement of the tRNAs during elongation.

Citing Articles

Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications.

Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati F, Behdani M Mol Ther Nucleic Acids. 2024; 35(3):102313.

PMID: 39281702 PMC: 11402252. DOI: 10.1016/j.omtn.2024.102313.


Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.

Jann C, Giofre S, Bhattacharjee R, Lemke E Chem Rev. 2024; 124(18):10281-10362.

PMID: 39120726 PMC: 11441406. DOI: 10.1021/acs.chemrev.3c00878.


Suppressor tRNA in gene therapy.

Ruan J, Yu X, Xu H, Cui W, Zhang K, Liu C Sci China Life Sci. 2024; 67(10):2120-2131.

PMID: 38926247 DOI: 10.1007/s11427-024-2613-y.


Mechanisms and Delivery of tRNA Therapeutics.

Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm S, Heinemann I Chem Rev. 2024; 124(12):7976-8008.

PMID: 38801719 PMC: 11212642. DOI: 10.1021/acs.chemrev.4c00142.


Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.

Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H Chem Rev. 2024; 124(10):6444-6500.

PMID: 38688034 PMC: 11122139. DOI: 10.1021/acs.chemrev.3c00894.


References
1.
Bossi L, Smith D . Suppressor sufJ: a novel type of tRNA mutant that induces translational frameshifting. Proc Natl Acad Sci U S A. 1984; 81(19):6105-9. PMC: 391868. DOI: 10.1073/pnas.81.19.6105. View

2.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View

3.
Atkins J, Bjork G . A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev. 2009; 73(1):178-210. PMC: 2650885. DOI: 10.1128/MMBR.00010-08. View

4.
Licznar P, Mejlhede N, Prere M, Wills N, Gesteland R, Atkins J . Programmed translational -1 frameshifting on hexanucleotide motifs and the wobble properties of tRNAs. EMBO J. 2003; 22(18):4770-8. PMC: 212731. DOI: 10.1093/emboj/cdg465. View

5.
Hagervall T, Tuohy T, Atkins J, Bjork G . Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J Mol Biol. 1993; 232(3):756-65. DOI: 10.1006/jmbi.1993.1429. View