» Articles » PMID: 35657094

Noncanonical Amino Acid Mutagenesis in Response to Recoding Signal-enhanced Quadruplet Codons

Overview
Specialty Biochemistry
Date 2022 Jun 3
PMID 35657094
Authors
Affiliations
Soon will be listed here.
Abstract

While amber suppression is the most common approach to introduce noncanonical amino acids into proteins in live cells, quadruplet codon decoding has potential to enable a greatly expanded genetic code with up to 256 new codons for protein biosynthesis. Since triplet codons are the predominant form of genetic code in nature, quadruplet codon decoding often displays limited efficiency. In this work, we exploited a new approach to significantly improve quadruplet UAGN and AGGN (N = A, U, G, C) codon decoding efficiency by using recoding signals imbedded in mRNA. With representative recoding signals, the expression level of mutant proteins containing UAGN and AGGN codons reached 48% and 98% of that of the wild-type protein, respectively. Furthermore, this strategy mitigates a common concern of reading-through endogenous stop codons with amber suppression-based system. Since synthetic recoding signals are rarely found near the endogenous UAGN and AGGN sequences, a low level of undesirable suppression is expected. Our strategy will greatly enhance the utility of noncanonical amino acid mutagenesis in live-cell studies.

Citing Articles

Genetic Code Expansion: Recent Developments and Emerging Applications.

Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X Chem Rev. 2024; 125(2):523-598.

PMID: 39737807 PMC: 11758808. DOI: 10.1021/acs.chemrev.4c00216.


Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.

Niu W, Guo J Chem Rev. 2024; 124(18):10577-10617.

PMID: 39207844 PMC: 11470805. DOI: 10.1021/acs.chemrev.3c00938.


iNClusive: a database collecting useful information on non-canonical amino acids and their incorporation into proteins for easier genetic code expansion implementation.

Icking L, Riedlberger A, Krause F, Widder J, Smedegaard Frederiksen A, Stockert F Nucleic Acids Res. 2023; 52(D1):D476-D482.

PMID: 37986218 PMC: 10767842. DOI: 10.1093/nar/gkad1090.


Non-Canonical Amino Acids in Analyses of Protease Structure and Function.

Goettig P, Koch N, Budisa N Int J Mol Sci. 2023; 24(18).

PMID: 37762340 PMC: 10531186. DOI: 10.3390/ijms241814035.


Dual Noncanonical Amino Acid Incorporation Enabling Chemoselective Protein Modification at Two Distinct Sites in Yeast.

Lahiri P, Martin M, Lino B, Scheck R, Van Deventer J Biochemistry. 2023; 62(14):2098-2114.

PMID: 37377426 PMC: 11146674. DOI: 10.1021/acs.biochem.2c00711.


References
1.
Ai H . Biochemical analysis with the expanded genetic lexicon. Anal Bioanal Chem. 2012; 403(8):2089-102. DOI: 10.1007/s00216-012-5784-2. View

2.
Chin J . Expanding and reprogramming the genetic code. Nature. 2017; 550(7674):53-60. DOI: 10.1038/nature24031. View

3.
Qian Q, Li J, Zhao H, Hagervall T, Farabaugh P, Bjork G . A new model for phenotypic suppression of frameshift mutations by mutant tRNAs. Mol Cell. 1998; 1(4):471-82. DOI: 10.1016/s1097-2765(00)80048-9. View

4.
Chin J . Molecular biology. Reprogramming the genetic code. Science. 2012; 336(6080):428-9. DOI: 10.1126/science.1221761. View

5.
Loveland A, Demo G, Grigorieff N, Korostelev A . Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature. 2017; 546(7656):113-117. PMC: 5657493. DOI: 10.1038/nature22397. View