» Articles » PMID: 30257219

Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data

Overview
Journal Cell Rep
Publisher Cell Press
Date 2018 Sep 27
PMID 30257219
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

We present a method for automatically discovering signaling pathways from time-resolved phosphoproteomic data. The Temporal Pathway Synthesizer (TPS) algorithm uses constraint-solving techniques first developed in the context of formal verification to explore paths in an interaction network. It systematically eliminates all candidate structures for a signaling pathway where a protein is activated or inactivated before its upstream regulators. The algorithm can model more than one hundred thousand dynamic phosphosites and can discover pathway members that are not differentially phosphorylated. By analyzing temporal data, TPS defines signaling cascades without needing to experimentally perturb individual proteins. It recovers known pathways and proposes pathway connections when applied to the human epidermal growth factor and yeast osmotic stress responses. Independent kinase mutant studies validate predicted substrates in the TPS osmotic stress pathway.

Citing Articles

Systems-level reconstruction of kinase phosphosignaling networks regulating endothelial barrier integrity using temporal data.

Wei L, Aitchison J, Kaushansky A, Mast F NPJ Syst Biol Appl. 2024; 10(1):134.

PMID: 39548089 PMC: 11568298. DOI: 10.1038/s41540-024-00468-9.


SignalingProfiler 2.0 a network-based approach to bridge multi-omics data to phenotypic hallmarks.

Venafra V, Sacco F, Perfetto L NPJ Syst Biol Appl. 2024; 10(1):95.

PMID: 39179556 PMC: 11343843. DOI: 10.1038/s41540-024-00417-6.


A Causal Regulation Modeling Algorithm for Temporal Events with Application to 's Aerobic to Anaerobic Transition.

Chen Y, Mao R, Xu J, Huang Y, Xu J, Cui S Int J Mol Sci. 2024; 25(11).

PMID: 38891842 PMC: 11171773. DOI: 10.3390/ijms25115654.


HIV-1 virological synapse formation enhances infection spread by dysregulating Aurora Kinase B.

Bruce J, Park E, Magnano C, Horswill M, Richards A, Potts G PLoS Pathog. 2023; 19(7):e1011492.

PMID: 37459363 PMC: 10374047. DOI: 10.1371/journal.ppat.1011492.


Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer.

Ross K, Zhang G, Akcora C, Lin Y, Fang B, Koomen J PLoS Comput Biol. 2023; 19(3):e1010690.

PMID: 36996232 PMC: 10089347. DOI: 10.1371/journal.pcbi.1010690.


References
1.
Molinelli E, Korkut A, Wang W, Miller M, Gauthier N, Jing X . Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol. 2013; 9(12):e1003290. PMC: 3868523. DOI: 10.1371/journal.pcbi.1003290. View

2.
Croft D, Mundo A, Haw R, Milacic M, Weiser J, Wu G . The Reactome pathway knowledgebase. Nucleic Acids Res. 2013; 42(Database issue):D472-7. PMC: 3965010. DOI: 10.1093/nar/gkt1102. View

3.
MacGilvray M, Shishkova E, Chasman D, Place M, Gitter A, Coon J . Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol. 2018; 13(5):e1006088. PMC: 5940180. DOI: 10.1371/journal.pcbi.1006088. View

4.
Cao L, Ding Y, Hung N, Yu K, Ritz A, Raphael B . Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells. PLoS One. 2012; 7(10):e46725. PMC: 3469622. DOI: 10.1371/journal.pone.0046725. View

5.
Razick S, Magklaras G, Donaldson I . iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics. 2008; 9:405. PMC: 2573892. DOI: 10.1186/1471-2105-9-405. View