» Articles » PMID: 30250711

Laboulbeniales Hyperparasites (Fungi, Ascomycota) of Bat Flies: Independent Origins and Host Associations

Overview
Journal Ecol Evol
Date 2018 Sep 26
PMID 30250711
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The aim of this study was to explore the diversity of ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies (Diptera, Hippoboscoidea) as hosts. Bat flies themselves live as ectoparasites on the fur and wing membranes of bats (Mammalia, Chiroptera); hence this is a tripartite parasite system. Here, we collected bats, bat flies, and Laboulbeniales, and conducted phylogenetic analyses of Laboulbeniales to contrast morphology with ribosomal sequence data. Parasitism of bat flies by Laboulbeniales arose at least three times independently, once in the Eastern Hemisphere () and twice in the Western Hemisphere (, ). We hypothesize that the genera and evolved independently from lineages of ectoparasites of true bugs (Hemiptera). We assessed phylogenetic diversity of the genus by considering the LSU rDNA region. Phenotypic plasticity and position-induced morphological adaptations go hand in hand. Different morphotypes belong to the same phylogenetic species. Two species, and , show divergence by host utilization. In our assessment of coevolution, we only observe congruence between the Old World clades of bat flies and Laboulbeniales. The other associations are the result of the roosting ecology of the bat hosts. This study has considerably increased our knowledge about bats and their associated ectoparasites and shown the necessity of including molecular data in Laboulbeniales taxonomy.

Citing Articles

Complete mitochondrial genome of Penicillidia dufourii (Diptera: Hippoboscoidea: Nycteribiidae) and phylogenetic relationship.

Zheng X, Lin X, Zhang X, Huang X, Yue X, Pu J Parasitol Res. 2024; 123(8):302.

PMID: 39158739 DOI: 10.1007/s00436-024-08321-y.


Hyperparasitism in bat flies (Diptera: Streblidae): new records and interaction networks in the Neotropics.

Lopez-Rivera C, Robayo-Sanchez L, Ramirez-Hernandez A, Cortes-Vecino J, Cuellar-Saenz J, Villar J Parasitol Res. 2024; 123(6):255.

PMID: 38922514 PMC: 11208258. DOI: 10.1007/s00436-024-08221-1.


New insights into the DNA extraction and PCR amplification of minute ascomycetes in the genus Laboulbenia (Pezizomycotina, Laboulbeniales).

Van Caenegem W, Haelewaters D IMA Fungus. 2024; 15(1):14.

PMID: 38863065 PMC: 11167896. DOI: 10.1186/s43008-024-00146-9.


Hyperparasitic Fungi on Black Mildews (Meliolales, Ascomycota): Hidden Fungal Diversity in the Tropics.

Bermudez-Cova M, Cruz-Laufer A, Piepenbring M Front Fungal Biol. 2023; 3:885279.

PMID: 37746226 PMC: 10512288. DOI: 10.3389/ffunb.2022.885279.


Viral Hyperparasitism in Bat Ectoparasites: Implications for Pathogen Maintenance and Transmission.

Tendu A, Catherine Hughes A, Berthet N, Wong G Microorganisms. 2022; 10(6).

PMID: 35744747 PMC: 9230612. DOI: 10.3390/microorganisms10061230.


References
1.
Eckhart L, Bach J, Ban J, Tschachler E . Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem Biophys Res Commun. 2000; 271(3):726-30. DOI: 10.1006/bbrc.2000.2716. View

2.
Parratt S, Laine A . The role of hyperparasitism in microbial pathogen ecology and evolution. ISME J. 2016; 10(8):1815-22. PMC: 5029149. DOI: 10.1038/ismej.2015.247. View

3.
Walker M, Dorrestein A, Camacho J, Meckler L, Silas K, Hiller T . A tripartite survey of hyperparasitic fungi associated with ectoparasitic flies on bats (Mammalia: Chiroptera) in a neotropical cloud forest in Panama. Parasite. 2018; 25:19. PMC: 5892177. DOI: 10.1051/parasite/2018017. View

4.
Goldmann L, Weir A . Molecular phylogeny of the Laboulbeniomycetes (Ascomycota). Fungal Biol. 2018; 122(2-3):87-100. DOI: 10.1016/j.funbio.2017.11.004. View

5.
Dick C . Review of the bat flies of honduras, central america (Diptera: streblidae). J Parasitol Res. 2013; 2013:437696. PMC: 3619636. DOI: 10.1155/2013/437696. View