» Articles » PMID: 30237175

Quaternary Structure of the Small Amino Acid Transporter OprG from

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2018 Sep 22
PMID 30237175
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

is an opportunistic human pathogen that causes nosocomial infections. The outer membrane contains specific porins that enable substrate uptake, with the outer membrane protein OprG facilitating transport of small, uncharged amino acids. However, the pore size of an eight-stranded β-barrel monomer of OprG is too narrow to accommodate even the smallest transported amino acid, glycine, raising the question of how OprG facilitates amino acid uptake. Pro-92 of OprG is critically important for amino acid transport, with a P92A substitution inhibiting transport and the NMR structure of this variant revealing that this substitution produces structural changes in the barrel rim and restricts loop motions. OprG may assemble into oligomers in the outer membrane (OM) whose subunit interfaces could form a transport channel. Here, we explored the contributions of the oligomeric state and the extracellular loops to OprG's function. Using chemical cross-linking to determine the oligomeric structures of both WT and P92A OprG in native outer membranes and atomic force microscopy, and single-molecule fluorescence of the purified proteins reconstituted into lipid bilayers, we found that both protein variants form oligomers, supporting the notion that subunit interfaces in the oligomer could provide a pathway for amino acid transport. Furthermore, performing transport assays with loop-deleted OprG variants, we found that these variants also can transport small amino acids, indicating that the loops are not solely responsible for substrate transport. We propose that OprG functions as an oligomer and that conformational changes in the barrel-loop region might be crucial for its activity.

Citing Articles

Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications.

Wu W, Huang J, Xu Z Microb Biotechnol. 2024; 17(5):e14487.

PMID: 38801351 PMC: 11129675. DOI: 10.1111/1751-7915.14487.


Structural Modeling of the Treponema pallidum Outer Membrane Protein Repertoire: a Road Map for Deconvolution of Syphilis Pathogenesis and Development of a Syphilis Vaccine.

Hawley K, Montezuma-Rusca J, Delgado K, Singh N, Uversky V, Caimano M J Bacteriol. 2021; 203(15):e0008221.

PMID: 33972353 PMC: 8407342. DOI: 10.1128/JB.00082-21.


A β-barrel for oil transport through lipid membranes: Dynamic NMR structures of AlkL.

Schubeis T, Le Marchand T, Daday C, Kopec W, Movellan K, Stanek J Proc Natl Acad Sci U S A. 2020; 117(35):21014-21021.

PMID: 32817429 PMC: 7474606. DOI: 10.1073/pnas.2002598117.


The Secretome Alters the Proteome of to Stimulate Bacterial Growth: Implications for Co-infection.

Margalit A, Carolan J, Sheehan D, Kavanagh K Mol Cell Proteomics. 2020; 19(8):1346-1359.

PMID: 32447284 PMC: 8015003. DOI: 10.1074/mcp.RA120.002059.

References
1.
Clifton L, Holt S, Hughes A, Daulton E, Arunmanee W, Heinrich F . An accurate in vitro model of the E. coli envelope. Angew Chem Int Ed Engl. 2015; 54(41):11952-5. PMC: 4600229. DOI: 10.1002/anie.201504287. View

2.
Brandl C, Deber C . Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci U S A. 1986; 83(4):917-21. PMC: 322981. DOI: 10.1073/pnas.83.4.917. View

3.
Yates J, Morris G, Brown M . Effect of iron concentration and growth rate on the expression of protein G in Pseudomonas aeruginosa. FEMS Microbiol Lett. 1989; 49(2-3):259-62. DOI: 10.1016/0378-1097(89)90049-9. View

4.
Kucharska I, Seelheim P, Edrington T, Liang B, Tamm L . OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa. Structure. 2015; 23(12):2234-2245. PMC: 4699568. DOI: 10.1016/j.str.2015.10.009. View

5.
Strateva T, Yordanov D . Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009; 58(Pt 9):1133-1148. DOI: 10.1099/jmm.0.009142-0. View