» Articles » PMID: 30199216

Facile Synthesis Toward the Optimal Structure-Conductivity Characteristics of the Argyrodite LiPSCl Solid-State Electrolyte

Overview
Date 2018 Sep 11
PMID 30199216
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The high Li-ion conductivity of the argyrodite LiPSCl makes it a promising solid electrolyte candidate for all-solid-state Li-ion batteries. For future application, it is essential to identify facile synthesis procedures and to relate the synthesis conditions to the solid electrolyte material performance. Here, a simple optimized synthesis route is investigated that avoids intensive ball milling by direct annealing of the mixed precursors at 550 °C for 10 h, resulting in argyrodite LiPSCl with a high Li-ion conductivity of up to 4.96 × 10 S cm at 26.2 °C. Both the temperature-dependent alternating current impedance conductivities and solid-state NMR spin-lattice relaxation rates demonstrate that the LiPSCl prepared under these conditions results in a higher conductivity and Li-ion mobility compared to materials prepared by the traditional mechanical milling route. The origin of the improved conductivity appears to be a combination of the optimal local Cl structure and its homogeneous distribution in the material. All-solid-state cells consisting of an 80LiS-20LiI cathode, the optimized LiPSCl electrolyte, and an In anode showed a relatively good electrochemical performance with an initial discharge capacity of 662.6 mAh g when a current density of 0.13 mA cm was used, corresponding to a C-rate of approximately C/20. On direct comparison with a solid-state battery using a solid electrolyte prepared by the mechanical milling route, the battery made with the new material exhibits a higher initial discharge capacity and Coulombic efficiency at a higher current density with better cycling stability. Nevertheless, the cycling stability is limited by the electrolyte stability, which is a major concern for these types of solid-state batteries.

Citing Articles

Ion Transport at Polymer-Argyrodite Interfaces.

Chen Y, Liang D, Lee E, Muy S, Guillaume M, Braida M ACS Appl Mater Interfaces. 2024; 16(36):48223-48234.

PMID: 39213640 PMC: 11403566. DOI: 10.1021/acsami.4c07440.


The glass phase in the grain boundary of NaZrSiPO, created by gallium modulation.

Lou C, Zhang W, Liu J, Gao Y, Sun X, Fu J Chem Sci. 2024; 15(11):3988-3995.

PMID: 38487237 PMC: 10935661. DOI: 10.1039/d3sc06578b.


Lithium Transport Studies on Chloride-Doped Argyrodites as Electrolytes for Solid-State Batteries.

Buchberger D, Garbacz P, Slupczynski K, Brzezicki A, Boczar M, Czerwinski A ACS Appl Mater Interfaces. 2023; 15(46):53417-53428.

PMID: 37922415 PMC: 10685348. DOI: 10.1021/acsami.3c10857.


A prototype of dual-ion conductor for all-solid-state lithium batteries.

Yu T, Li H, Liu Y, Li J, Tian J, Liu Z Sci Adv. 2023; 9(44):eadj8171.

PMID: 37922354 PMC: 10624349. DOI: 10.1126/sciadv.adj8171.


Exploring the Relationship Between Halide Substitution, Structural Disorder, and Lithium Distribution in Lithium Argyrodites (LiPSBr).

Gautam A, Al-Kutubi H, Famprikis T, Ganapathy S, Wagemaker M Chem Mater. 2023; 35(19):8081-8091.

PMID: 37840779 PMC: 10569443. DOI: 10.1021/acs.chemmater.3c01525.


References
1.
Luntz A, Voss J, Reuter K . Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett. 2015; 6(22):4599-604. DOI: 10.1021/acs.jpclett.5b02352. View

2.
Zhang W, Leichtweiss T, Culver S, Koerver R, Das D, Weber D . The Detrimental Effects of Carbon Additives in LiGePS-Based Solid-State Batteries. ACS Appl Mater Interfaces. 2017; 9(41):35888-35896. DOI: 10.1021/acsami.7b11530. View

3.
Kraft M, Culver S, Calderon M, Bocher F, Krauskopf T, Senyshyn A . Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites LiPSX (X = Cl, Br, I). J Am Chem Soc. 2017; 139(31):10909-10918. DOI: 10.1021/jacs.7b06327. View

4.
Yu C, Ganapathy S, de Klerk N, Roslon I, van Eck E, Kentgens A . Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery. J Am Chem Soc. 2016; 138(35):11192-201. DOI: 10.1021/jacs.6b05066. View

5.
Deiseroth H, Kong S, Eckert H, Vannahme J, Reiner C, Zaiss T . Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl. 2007; 47(4):755-8. DOI: 10.1002/anie.200703900. View